Skip to main content
Log in

Phase-Field Approximation of the Willmore Flow

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We investigate the phase-field approximation of the Willmore flow by rigorously justifying its sharp interface limit. This is a fourth-order diffusion equation with a parameter \(\varepsilon >0\) that is proportional to the thickness of the diffuse interface. We show rigorously that for well-prepared initial data, as \(\varepsilon \) tends to zero the level-set of the solution will converge to the motion by Willmore flow as long as the classical solution to the latter exists. This is done by constructing an approximate solution from the limiting flow via matched asymptotic expansions, and then estimating its difference with the real solution. The crucial step is to prove a spectrum inequality of the linearized operator at the optimal profile, which is a fourth-order operator written as the square of the Allen–Cahn operator plus a singular perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. For any tangential differential operator \(\sum _{1\le i\le N-1}a_i(r,s)\partial _{s_i}\), its commutator with \(\partial _r\) is a first-order

    $$\begin{aligned} \bigg [\sum _{1\le i\le N-1}a_i(r,s)\partial _{s_i},\partial _r\bigg ] f=-\sum _{1\le i\le N-1}\partial _r a_i(r,s) \partial _{s_i}f. \end{aligned}$$
    (6.8)
  2. Here the contributions due to \(\phi _e\) are omitted as they are of much lower order.

References

  1. Abels, H., Liu, Y.: Sharp interface limit for a Stokes/Allen–Cahn system. Arch. Ration. Mech. Anal. 229(1), 417–502, 2018

    Article  MathSciNet  Google Scholar 

  2. Alikakos, N.D., Bates, P.W., Chen, X.: Convergence of the Cahn–Hilliard equation to the Hele–Shaw model. Arch. Ration. Mech. Anal. 128(2), 165–205, 1994

    Article  MathSciNet  Google Scholar 

  3. Bellettini, G.: Lecture Notes on Mean Curvature Flow, Barriers and Singular Perturbations, volume 12 of Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa (2013)

  4. Bellettini, G., Paolini, M.: Approssimazione variazionale di funzionali con curvatura. Seminario di Analisi Matematica, Dipartimento di Matematica dell’Universita di Bologna, pp. 87–97 (1993)

  5. Bretin, E., Masnou, S., Oudet, E.: Phase-field approximations of the Willmore functional and flow. Numer. Math. 131(1), 115–171, 2015

    Article  MathSciNet  Google Scholar 

  6. Carlen, E.A., Carvalho, M.C., Orlandi, E.: Approximate solutions of the Cahn–Hilliard equation via corrections to the Mullins–Sekerka motion. Arch. Ration. Mech. Anal. 178(1), 1–55, 2005

    Article  MathSciNet  Google Scholar 

  7. Chen, X.: Spectrum for the Allen–Cahn, Cahn–Hillard, and phase-field equations for generic interfaces. Commun. Partial Differ. Equ. 19(7–8), 1371–1395, 1994

    Article  Google Scholar 

  8. Chen, X.: Global asymptotic limit of solutions of the Cahn–Hilliard equation. J. Diff. Geom. 44(2), 262–311, 1996

    MathSciNet  MATH  Google Scholar 

  9. Chen, X., Hilhorst, D., Logak, E.: Mass conserved Allen–Cahn equation and volume preserving mean curvature flow. Interfaces Free Bound. 12(4), 527–549, 2010

    Article  MathSciNet  Google Scholar 

  10. Colli, P., Laurençot, P.: A phase-field approximation of the Willmore flow with volume constraint. Interfaces Free Bound. 13(3), 341–351, 2011

    Article  MathSciNet  Google Scholar 

  11. Colli, P., Laurençot, P.: A phase-field approximation of the Willmore flow with volume and area constraints. SIAM J. Math. Anal. 44(6), 3734–3754, 2012

    Article  MathSciNet  Google Scholar 

  12. De Mottoni, P., Schatzman, M.: Geometrical evolution of developed interfaces. Trans. Am. Math. Soc. 347(5), 1533–1589, 1995

    Article  MathSciNet  Google Scholar 

  13. del, M., Pino, M., Wei, J.: An introduction to the finite and infinite dimensional reduction methods. In: Geometric Analysis Around Scalar Curvatures, volume 31 of Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, pp. 35–118. World Scientific Publishing, Hackensack (2016)

  14. Do Carmo, M.P.: Differential forms and applications. Universitext. Springer, Berlin 1994. Translated from the 1971 Portuguese original

  15. Du, Q., Li, M., Liu, C.: Analysis of a phase field Navier–Stokes vesicle-fluid interaction model. Discrete Contin. Dyn. Syst. Ser. B 8(3), 539–556, 2007

    MathSciNet  MATH  Google Scholar 

  16. Du, Q., Liu, C., Ryham, R., Wang, X.: Energetic variational approaches in modeling vesicle and fluid interactions. Phys. D 238(9–10), 923–930, 2009

    Article  MathSciNet  Google Scholar 

  17. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198(2), 450–468, 2004

    Article  ADS  MathSciNet  Google Scholar 

  18. Dziuk, G., Kuwert, E., Schätzle, R.: Evolution of elastic curves in \(\mathbb{R}^n\): existence and computation. SIAM J. Math. Anal. 33(5), 1228–1245, 2002

    Article  MathSciNet  Google Scholar 

  19. Evans, L.C.: Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence 2010

    Google Scholar 

  20. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics. Textbooks in Mathematics, revised edn. CRC Press, Boca Raton (2015)

  21. Fei, M., Wang, W., Zhang, P., Zhang, Z.: On the isotropic-nematic phase transition for the liquid crystal. Peking Math. J. 1(2), 141–219, 2018

    Article  MathSciNet  Google Scholar 

  22. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforschung C 28(11–12), 693–703, 1973

    Article  Google Scholar 

  23. Kuwert, E., Schätzle, R.: Removability of point singularities of Willmore surfaces. Ann. Math. (2) 160(1), 315–357, 2004

    Article  MathSciNet  Google Scholar 

  24. Kuwert, E., Schätzle, R.: The Willmore functional. In: Topics in Modern Regularity Theory, volume 13 of CRM Series, pp. 1–115. Ed. Norm., Pisa (2012)

  25. Le, N.Q.: A gamma-convergence approach to the Cahn–Hilliard equation. Calc. Var. Partial Differ. Equ. 32(4), 499–522, 2008

    Article  MathSciNet  Google Scholar 

  26. Loreti, P., March, R.: Propagation of fronts in a nonlinear fourth order equation. Eur. J. Appl. Math. 11(2), 203–213, 2000

    Article  MathSciNet  Google Scholar 

  27. Masmoudi, N., Rousset, F.: Uniform regularity and vanishing viscosity limit for the free surface Navier–Stokes equations. Arch. Ration. Mech. Anal. 223(1), 301–417, 2017

    Article  MathSciNet  Google Scholar 

  28. Métivier, G: Small viscosity and boundary layer methods. Theory, stability analysis, and applications. In: Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston, Inc., Boston (2004)

  29. Ou-Yang, Z.-C., Liu, J.-X., Xie, Y.-Z., Yu-Zhang, X.: Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases, vol. 2. World Scientific, Singapore 1999

    Book  Google Scholar 

  30. Rivière, T.: Analysis aspects of Willmore surfaces. Invent. Math. 174(1), 1–45, 2008

    Article  ADS  MathSciNet  Google Scholar 

  31. Röger, M., Schätzle, R.: On a modified conjecture of De Giorgi. Math. Z. 254(4), 675–714, 2006

    Article  MathSciNet  Google Scholar 

  32. Seifert, U.: Configurations of fluid membranes and vesicles. Adv. Phys. 46(1), 13–137, 1997

    Article  ADS  Google Scholar 

  33. Wang, X.: Asymptotic analysis of phase field formulations of bending elasticity models. SIAM J. Math. Anal. 39(5), 1367–1401, 2008

    Article  MathSciNet  Google Scholar 

  34. Wu, H., Xu, X.: Strong solutions, global regularity, and stability of a hydrodynamic system modeling vesicle and fluid interactions. SIAM J. Math. Anal. 45(1), 181–214, 2013

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for helpful suggestions. M. Fei is partially supported by NSF of China under Grant 11871075 and Grant 11971357. Y. Liu is partially supported by NSF of China under Grant 11971314 and the Affiliated Faculty Research Grant of NYU Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuning Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by F. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Formally Matched Expansions

Appendix A. Formally Matched Expansions

We use the matched asymptotic expansions to obtain (3.3a) and (3.3), and thus give a complete proof of Proposition 3.1, and of (1.9). The construction will employ the solvability of an ODE, see [2, Lemma 4.1].

Lemma A.1

Let \(\ell ,m, n\in \{0, 1, 2\}\) and \(\widetilde{A}(z,x,t):\mathbb {R}\times \Gamma ^0(\delta )\rightarrow \mathbb {R}\) be a function satisfying

$$\begin{aligned} \partial _z^\ell \partial _x^m\partial _t^n \widetilde{A}(z,x,t)=O(e^{-C|z|})~\text {as}~z\rightarrow \pm \infty ,~\text {uniformly in}~(x,t)\in \Gamma ^0(\delta ) \end{aligned}$$
(7.30)

and the following compatibility condition:

$$\begin{aligned} \int _{\mathbb {R}}\widetilde{A}(z,x,t)\theta '(z)\mathrm{dz}=0,~(x,t)\in \Gamma ^0(\delta ). \end{aligned}$$
(A.1)

Then the equation \(\mathscr {L} \widetilde{U}=\widetilde{A}\) has a bounded solution so that

$$\begin{aligned} \partial _z^\ell \partial _x^m\partial _t^n \widetilde{U}(z,x,t)=O(e^{-C|z|})~\text {as}~z\rightarrow \pm \infty ,~\text {uniformly in}~(x,t)\in \Gamma ^0(\delta ). \end{aligned}$$
(A.2)

Moreover, there exists a smooth function U(xt) such that

$$\begin{aligned} {\widetilde{U}(z,x,t)=U(x,t)\theta '(z)+\left[ \int _{0}^{z}(\theta '(\zeta ))^{-2}\left( \int _{\zeta }^{+\infty }\widetilde{A}(\tau ,x,t)\theta '(\tau )d\tau \right) d\zeta \,\right] \theta '(z).} \end{aligned}$$
(A.3)

The unique solution satisfying \(\widetilde{U}(0,x,t)=0\) corresponds to \(U\equiv 0\).

Recall from Section 2.1 that \(d^{(0)}\) is the signed-distance to \(\Gamma ^0\). We need the following lemma whose proof can be found in [5].

Lemma A.2

The interface \(\Gamma ^0\) evolves under the Willmore flow (1.5) if and only if \(d^{(0)}\) fulfills

$$\begin{aligned} \partial _td^{(0)}+\Delta ^2 d^{(0)}=\Delta d^{(0)}{D^{(0)}} +\nabla d^{(0)}\cdot \nabla {D^{(0)}}\ \ \ \text {on}\ \ \Gamma ^0. \end{aligned}$$
(A.4)

Following [2], we employ the stretched variable \(z=\frac{d_\varepsilon }{\varepsilon }\in \mathbb {R}\) (see (2.1) for the definition of \(d_\varepsilon \)) and set the following Ansatz in \(\Gamma ^0(3\delta )\) for the inner expansion

$$\begin{aligned} \widetilde{\phi }^\varepsilon (z,x,t)=\sum _{\ell \ge 0}\varepsilon ^\ell \widetilde{\phi }^{(\ell )}(z,x,t),\qquad \widetilde{\mu }^\varepsilon (z,x,t)=\sum _{\ell \ge 0}\varepsilon ^\ell \widetilde{\mu }^{(\ell )}(z,x,t), \end{aligned}$$
(A.5)

which should fulfill the following matching conditions in \((x,t)\in \Gamma ^0(3\delta )\):

$$\begin{aligned}&D_z^\gamma D_x^\alpha D_t^\beta \Big (\widetilde{\phi }^{(i)}(z,x,t)-\phi ^{(i)}_{\pm }(x,t)\Big )=O(e^{-\nu |z|}), \end{aligned}$$
(A.6)
$$\begin{aligned}&D_z^\gamma D_x^\alpha D_t^\beta \Big (\widetilde{\mu }^{(i)}(z,x,t) -\mu ^{(i)}_{\pm }(x,t)\Big )=O(e^{-\nu |z|}). \end{aligned}$$
(A.7)

Here \(\nu \) is a positive fixed constant and \(0\le \alpha ,\beta ,\gamma \le 2\). It follows from the Taylor expansion and (A.6) that

$$\begin{aligned} f'(\widetilde{\phi }^\varepsilon )&=f'(\widetilde{\phi }^{(0)})+ f''(\widetilde{\phi }^{(0)})\sum _{i\ge 1}\varepsilon ^i\widetilde{\phi }^{(i)}+\sum _{i\ge 1} \varepsilon ^{i} g_{i-1}\big (\widetilde{\phi }^{(0)},\cdots , \widetilde{\phi }^{(i-1)}\big ), \end{aligned}$$
(A.8)
$$\begin{aligned} f''(\widetilde{\phi }^\varepsilon )&=f''(\widetilde{\phi }^{(0)})+ f'''(\widetilde{\phi }^{(0)})\sum _{i\ge 1}\varepsilon ^i\widetilde{\phi }^{(i)}+ \sum _{i\ge 1} \varepsilon ^i g_{i-1}^*\big (\widetilde{\phi }^{(0)},\cdots , \widetilde{\phi }^{(i-1)}\big ), \end{aligned}$$
(A.9a)

where \(g_i,g_i^*\) enjoy the following property:

Lemma A.3

For \(i\ge 1\), \(g_i(x_0,\cdots ,x_i)\) and \(g^*_i(x_0,\cdots ,x_i)\) are polynomials of \(i+1\) variables. Moreover, they vanish when \(x_1=\cdots =x_{i-1}=0\), and \(g_0=g^*_0=0\).

Using \(|\nabla d_\varepsilon |=1\) and the chain-rule, we have the following expansions

$$\begin{aligned} \partial _t \widetilde{\phi }^\varepsilon (\tfrac{d_\varepsilon }{\varepsilon },x,t)&=\partial _t\widetilde{\phi }^\varepsilon +\varepsilon ^{-1}\partial _z\widetilde{\phi }^\varepsilon \partial _td_\varepsilon ,\\ \Delta \widetilde{\mu }^\varepsilon (\tfrac{d_\varepsilon }{\varepsilon },x,t)&=\varepsilon ^{-2}\partial _z^2\widetilde{\mu }^\varepsilon +2\varepsilon ^{-1}\nabla _x\partial _z\widetilde{\mu }^\varepsilon \cdot \nabla d_\varepsilon +\varepsilon ^{-1}\partial _z\widetilde{\mu }^\varepsilon \Delta d_\varepsilon +\Delta _x\widetilde{\mu }^\varepsilon ,\\ \Delta \widetilde{\phi }^\varepsilon (\tfrac{d_\varepsilon }{\varepsilon },x,t)&=\varepsilon ^{-2}\partial _z^2\widetilde{\phi }^\varepsilon +2\varepsilon ^{-1}\nabla _x\partial _z\widetilde{\phi }^\varepsilon \cdot \nabla d_\varepsilon +\varepsilon ^{-1}\partial _z\widetilde{\phi }^\varepsilon \Delta d_\varepsilon +\Delta _x\widetilde{\phi }^\varepsilon . \end{aligned}$$

We expect \((\widetilde{\phi }^\varepsilon (z,x,t),\widetilde{\mu }^\varepsilon (z,x,t))|_{z= d_\varepsilon /\varepsilon }\) to satisfy (1.1) up to a high order term in \(\varepsilon \) and thus determine the terms in (A.6):

$$\begin{aligned} \partial _z^2\widetilde{\mu }^\varepsilon -f''(\widetilde{\phi }^\varepsilon )\widetilde{\mu }^\varepsilon +2\varepsilon \nabla _x\partial _z\widetilde{\mu }^\varepsilon \cdot \nabla d_\varepsilon +\varepsilon \partial _z\widetilde{\mu }^\varepsilon \Delta d_\varepsilon -\varepsilon ^2\partial _z\widetilde{\phi }^\varepsilon \partial _td_\varepsilon \nonumber \\+\varepsilon ^2\Delta _x\widetilde{\mu }^\varepsilon -\varepsilon ^3\partial _t\widetilde{\phi }^\varepsilon = O(\varepsilon ^{k}), \end{aligned}$$
(A.9b)
$$\begin{aligned} -\partial _z^2\widetilde{\phi }^\varepsilon +f'(\widetilde{\phi }^\varepsilon )-2\varepsilon \nabla _x\partial _z\widetilde{\phi }^\varepsilon \cdot \nabla d_\varepsilon -\varepsilon \partial _z\widetilde{\phi }^\varepsilon \Delta d_\varepsilon -\varepsilon \widetilde{\mu }^\varepsilon -\varepsilon ^2\Delta _x\widetilde{\phi }^\varepsilon = O(\varepsilon ^{k}). \end{aligned}$$
(A.10)

Since \(z=\frac{d_\varepsilon }{\varepsilon }\), we need the above two equations to hold merely on

$$S^\varepsilon \triangleq \{(z,x,t)\in \mathbb {R}\times \Gamma ^0(3\delta ):z= d_\varepsilon /\varepsilon \}.$$

So we can add in (A.10) terms which are multiplied by \(d_\varepsilon -\varepsilon z\). These terms will give more degrees of freedom to construct and to solve the equations for \(d^{(\ell )}\). See Remark A.1 below and [2]. So we modify (A.10) as follows

$$\begin{aligned} \partial _z^2\widetilde{\mu }^\varepsilon -f''(\widetilde{\phi }^\varepsilon )\widetilde{\mu }^\varepsilon&+2\varepsilon \nabla _x\partial _z\widetilde{\mu }^\varepsilon \cdot \nabla d_\varepsilon +\varepsilon \partial _z\widetilde{\mu }^\varepsilon \Delta d_\varepsilon -\varepsilon ^2\partial _z\widetilde{\phi }^\varepsilon \partial _td_\varepsilon \nonumber \\&+\varepsilon ^2\Delta _x\widetilde{\mu }^\varepsilon -\varepsilon ^3\partial _t\widetilde{\phi }^\varepsilon +\varepsilon ^2\chi ^\varepsilon (d_\varepsilon -\varepsilon z)\eta '= O(\varepsilon ^{k}), \end{aligned}$$
(A.11)

where \(\eta (z)\) is a smooth non-decreasing function satisfying

$$\begin{aligned} \eta (z)=0\ \text {if}\ z\le -1;\ \eta (z)=1\ \text {if}\ z\ge 1;\ \ \eta '(z)\ \text {is\ even}, \end{aligned}$$
(A.12)

and \(\chi ^{\varepsilon }(x, t)=\sum _{i=0}^{\infty }\varepsilon ^{i}\chi ^{(i)}(x, t)\) with \(\chi ^{(i)}\) being determined later on.

Definition A.4

We shall use \(\varepsilon ^\ell \)-scale to denote the terms of form \(\varepsilon ^\ell g(z,x,t)\). The \(\ell \)-order will refer to those indexed by \(\ell \) if \(\ell \ge 0\), and by 0 if \(\ell <0\). Moreover, \(\widetilde{\Psi }^{(\ell )}(z,x,t)\) and \(\Xi ^{(\ell )}(x,t)\) will denote generic terms which might change from line to line, and will depend on terms of order at most \(\ell \).

1.1 \(\varepsilon ^1\)-Scale

Collecting all terms of \(\varepsilon ^0\)-scale in (A.11)–(A.12), we have \(\partial _z^2\widetilde{\phi }^{(0)}=f'(\widetilde{\phi })\) and \(\partial _z^2\widetilde{\mu }^{(0)}=f''(\widetilde{\phi }^{(0)})\widetilde{\mu }^{(0)}\). Together with the matching condition (A.7) and (A.8), we obtain

$$\begin{aligned} \widetilde{\phi }^{(0)}=\theta (z),\quad \widetilde{\mu }^{(0)}(z,x,t)=\mu _0(x,t)\theta '(z), \end{aligned}$$
(A.13)

for some function \(\mu _0\) which will be determined later on. To proceed we recall the operator \(\mathscr {L}\) defined at (1.16), which enjoys

$$\begin{aligned} \mathscr {L}~\text {is self-adjoint},~ \partial _z\mathscr {L}-\mathscr {L}\partial _z=f'''(\theta )\theta '\mathcal {I}. \end{aligned}$$
(A.14)

Collecting all terms of \(\varepsilon ^1\)-scale in (A.11)–(A.12), and using \(\widetilde{\phi }^{(0)}=\theta (z)\), we have

$$\begin{aligned} \mathscr {L}\widetilde{\mu }^{(1)}&=-f'''(\theta )\widetilde{\phi }^{(1)}\widetilde{\mu }^{(0)} +2\nabla _x\partial _z\widetilde{\mu }^{(0)}\cdot \nabla d^{(0)}+\partial _z\widetilde{\mu }^{(0)}\Delta d^{(0)}, \end{aligned}$$
(A.15)
$$\begin{aligned} \mathscr {L}\widetilde{\phi }^{(1)}&=\widetilde{\mu }^{(0)}+\partial _z\theta \Delta d^{(0)}. \end{aligned}$$
(A.16a)

Here \(\mu _0\) is chosen such that (A.16b) fulfills (A.2), i.e. \(\mu _0=-\Delta d^{(0)}\). Thus

$$\begin{aligned} \widetilde{\mu }^{(0)}(z,x,t)=-\Delta d^{(0)}\theta ',~\widetilde{\phi }^{(1)}(z,x,t)=0. \end{aligned}$$
(A.16b)

This together with Lemma A.3 implies

$$\begin{aligned} g_{1}=g_{2}=g_{1}^*=g_{2}^*=0. \end{aligned}$$
(A.17)

Substituting this into (A.16a) yields \({\mathscr {L}\widetilde{\mu }^{(1)}}=-{2D^{(0)}}\theta ''\) where \(D^{(0)}\) is given by

$$\begin{aligned} D^{(0)}(x,t)=\nabla \Delta d^{(0)}\cdot \nabla d^{(0)}+\tfrac{1}{2}(\Delta d^{(0)})^2. \end{aligned}$$
(A.18)

Using (A.4) we deduce

$$\begin{aligned} \widetilde{\mu }^{(1)}(z,x,t)&=D^{(0)}z\theta '(z)+\mu _1(x,t)\theta '(z) \end{aligned}$$
(A.19)

for some \(\mu _1(x,t)\) which will be determined later on.

1.2 \(\varepsilon ^2\)-Scale

Substituting (A.6) into (A.10)–(A.11), and collecting all terms of \(\varepsilon ^2\)-scale, we obtain

$$\begin{aligned} 0&=\partial _z^2\widetilde{\mu }^{(2)}-f''(\theta )\widetilde{\mu }^{(2)}-f'''(\theta )\widetilde{\phi }^{(1)}\widetilde{\mu }^{(1)} -\big (f'''(\theta )\widetilde{\phi }^{(2)}+g_1^*\big (\widetilde{\phi }^{(0)},\widetilde{\phi }^{(1)}\big )\big )\widetilde{\mu }^{(0)} \nonumber \\&\quad +2\nabla _x\partial _z\widetilde{\mu }^{(1)}\cdot \nabla d^{(0)} +2\nabla _x\partial _z\widetilde{\mu }^{(0)}\cdot \nabla d^{(1)} +\partial _z\widetilde{\mu }^{(1)}\Delta d^{(0)}+\partial _z\widetilde{\mu }^{(0)}\Delta d^{(1)} \nonumber \\&\quad -\partial _z\theta \partial _td^{(0)}+ \Delta _x\widetilde{\mu }^{(0)}+\chi ^{(0)} d^{(0)}\eta ',\\ 0&=-\partial _z^2\widetilde{\phi }^{(2)}+f''(\theta )\widetilde{\phi }^{(2)} +g_1\big (\widetilde{\phi }^{(0)},\widetilde{\phi }^{(1)}\big ) -2\nabla _x\partial _z\widetilde{\phi }^{(1)}\cdot \nabla d^{(0)}-2\nabla _x\partial _z\theta \cdot \nabla d^{(1)} \nonumber \\&\quad -\partial _z\widetilde{\phi }^{(1)}\Delta d^{(0)}-\partial _z\theta \Delta d^{(1)}-\widetilde{\mu }^{(1)}-\Delta _x\widetilde{\phi }^{(0)}. \end{aligned}$$

In view of (A.18), the above two equations can be simplified as

$$\begin{aligned} {\mathscr {L}\widetilde{\mu }^{(2)}}&= -f'''(\theta )\widetilde{\phi }^{(2)}\widetilde{\mu }^{(0)} +2\nabla _x\partial _z\widetilde{\mu }^{(1)}\cdot \nabla d^{(0)} +2\nabla _x\partial _z\widetilde{\mu }^{(0)}\cdot \nabla d^{(1)} \nonumber \\&\quad +\partial _z\widetilde{\mu }^{(1)}\Delta d^{(0)}+\partial _z\widetilde{\mu }^{(0)}\Delta d^{(1)}-\partial _z\theta \partial _td^{(0)}+ \Delta _x\widetilde{\mu }^{(0)}+\chi ^{(0)} d^{(0)}\eta ', \end{aligned}$$
(A.20)
$$\begin{aligned} {\mathscr {L}\widetilde{\phi }^{(2)}}&=\partial _z\theta \Delta d^{(1)}+\widetilde{\mu }^{(1)} =\big (\Delta d^{(1)}+\mu _1\big )\theta '+{D^{(0)}}z\theta '(z). \end{aligned}$$
(A.21a)

Recall (A.20) that \(\mu _1\) shall be determined such that (A.21b) fulfills (A.2), i.e. \(\big (\Delta d^{(1)}+\mu _1\big )\sigma =0\), where \(\sigma \triangleq \int _{\mathbb {R}}(\theta ')^2\mathrm{dz}\). This leads to the formula for \(\mu _1\) and completes formula (A.20):

$$\begin{aligned} \mu _1(x,t)=-\Delta d^{(1)},\qquad \widetilde{\mu }^{(1)}(z,x,t)&=D^{(0)}z\theta '(z)-\Delta d^{(1)}\theta '(z). \end{aligned}$$
(A.21b)

As a result, (A.21b) is simplified to

$$\begin{aligned} {\mathscr {L}\widetilde{\phi }^{(2)}}={D^{(0)}}z\theta '(z). \end{aligned}$$
(A.22)

Using \(\int _{\mathbb {R}}z(\theta ')^2\mathrm{dz}=0\) and formula (A.4), we can solve (A.23):

$$\begin{aligned} \widetilde{\phi }^{(2)}(z,x,t)={D^{(0)}}\theta '(z) \alpha (z),~\text {with}~\alpha (z)\triangleq \int _{0}^{z}(\theta '(\zeta ))^{-2}\int _{\zeta }^{+\infty }\tau (\theta '(\tau ))^2d\tau d\zeta \end{aligned}$$
(A.23)

being an odd function. This implies that \(\widetilde{\phi }^{(2)}\) is odd with respect to z. On the other hand, \(\chi ^{(0)}\) is determined so that the right hand side of (A.21a) fulfills (A.2), e.g.

$$\begin{aligned} \chi ^{(0)}d^{(0)}\sigma ^{-1}\overline{\sigma }=\mathscr {G}_0d^{(0)},~\text {with}~\overline{\sigma }=\int _{\mathbb {R}}\eta '\theta ' \mathrm{dz},\end{aligned}$$
(A.24)
$$\begin{aligned} \mathscr {G}_0d^{(0)}\triangleq \partial _td^{(0)}+\Delta ^2 d^{(0)}-\Delta d^{(0)}{D^{(0)}} -\nabla d^{(0)}\cdot \nabla {D^{(0)}}. \end{aligned}$$
(A.25)

Note that we used the following formula which is due to (A.15) and (A.23):

$$\begin{aligned} \int _{\mathbb {R}}f'''(\theta )\widetilde{\phi }^{(2)}(\theta ')^2\mathrm{dz}=\int _{\mathbb {R}}\partial _z\big ({\mathscr {L}\widetilde{\phi }^{(2)}}\big )\theta '\mathrm{dz}-\int _{\mathbb {R}} \mathscr {L}\left( \partial _z\widetilde{\phi }^{(2)}\right) \theta ' \mathrm{dz}=\tfrac{\sigma }{2} D^{(0)}. \end{aligned}$$
(A.26)

Combining (A.25) and (A.5) leads to the choice of \(\chi ^{(0)}\):

$$\begin{aligned} \chi ^{(0)}\triangleq \left\{ \begin{array}{llr} \sigma (\overline{\sigma })^{-1}\left( \mathscr {G}_0d^{(0)}\right) /d^{(0)}, \ &{}\forall (x,t)\in \Gamma ^0(3\delta )\backslash \Gamma ^0,\\ \sigma (\overline{\sigma })^{-1}\nabla \left( \mathscr {G}_0d^{(0)}\right) \cdot \nabla d^{(0)}, \ &{}\forall (x,t)\in \Gamma ^0. \end{array} \right. \end{aligned}$$
(A.27)

Remark A.1

If we do not modify the equation (A.10) into (A.12), then we would require the equation (A.5) to hold in \(\Gamma ^0(3\delta )\), which is not compatible with \(|\nabla d^{(0)}|=1\) in general.

The formula (A.25) reduces (A.21a) to

$$\begin{aligned} \mathscr {L}\widetilde{\mu }^{(2)}&= \big (f'''(\theta )(\theta ')^2\alpha +z\theta ''\big )\Delta d^{(0)}{D^{(0)}} +\big (\theta '+2z\theta ''\big )\nabla d^{(0)}\cdot \nabla {D^{(0)}}\nonumber \\&-2\theta ''{D^{(1)}} +\chi ^{(0)}d^{(0)}\eta '- \sigma ^{-1}\overline{\sigma }\chi ^{(0)}d^{(0)}\theta ', \end{aligned}$$
(A.28)
$$\begin{aligned} D^{(1)}&=\nabla \Delta d^{(1)}\cdot \nabla d^{(0)}+\nabla \Delta d^{(0)}\cdot \nabla d^{(1)}+\Delta d^{(0)}\Delta d^{(1)}. \end{aligned}$$
(A.29)

Note that \(D^{(1)}\) is consistent with (3.4). We can solve (A.29) by employing (A.4),

$$\begin{aligned} \widetilde{\mu }^{(2)}(z,x,t)=&\Delta d^{(0)}{D^{(0)}}\theta '(z)\gamma _1(z) +\nabla d^{(0)}\cdot \nabla {D^{(0)}}\theta '(z)\gamma _2(z) \nonumber \\&+{D^{(1)}}z\theta ' +\mu _2(x,t)\theta ' +\chi ^{(0)}d^{(0)}\theta '(z)\gamma _3(z), \end{aligned}$$
(A.30)

where \(\mu _2(x,t)\) is a smooth function which will be determined by the \(\varepsilon ^3\)-scale below, and \(\gamma _1(z)\) and \(\gamma _2(z)\) and \(\gamma _3(z)\) are three even functions defined by

$$\begin{aligned} \begin{aligned}&\gamma _1(z)=\int _{0}^{z}(\theta '(\zeta ))^{-2}\int _{\zeta }^{+\infty }\theta '(\tau )\big (f'''(\theta )(\theta ')^2\alpha +\tau \theta ''\big )(\tau )d\tau d\zeta , \quad \gamma _2(z)=-z^2/2, \\&\gamma _3(z)=\int _{0}^{z}(\theta '(\zeta ))^{-2}\int _{\zeta }^{+\infty }\theta '(\tau )\big (\eta '(\tau )-\sigma ^{-1}\overline{\sigma }\theta '(\tau )\big )d\tau d\zeta . \end{aligned} \end{aligned}$$
(A.31)

1.3 \(\varepsilon ^3\)-Scale

We substitute (A.6) into (A.11)–(A.12), then use (A.18) and collect all the terms of \(\varepsilon ^3\)-scale:

$$\begin{aligned} \mathscr {L}\widetilde{\mu }^{(3)}&=-f'''(\theta )\widetilde{\phi }^{(2)}\widetilde{\mu }^{(1)} -f'''(\theta )\widetilde{\phi }^{(3)}\widetilde{\mu }^{(0)}+\big (\chi ^{(0)}d^{(1)}+\chi ^{(1)}d^{(0)}\big ) \eta '-\chi ^{(0)}z\eta ' \nonumber \\&\quad +2\nabla _x\partial _z\widetilde{\mu }^{(2)}\cdot \nabla d^{(0)} +2\nabla _x\partial _z\widetilde{\mu }^{(0)}\cdot \nabla d^{(2)}+2\nabla _x\partial _z\widetilde{\mu }^{(1)}\cdot \nabla d^{(1)} \nonumber \\&\quad +\partial _z\widetilde{\mu }^{(2)}\Delta d^{(0)}+\partial _z\widetilde{\mu }^{(0)}\Delta d^{(2)}+\partial _z\widetilde{\mu }^{(1)}\Delta d^{(1)} -\partial _z\theta \partial _td^{(1)}+\Delta _x\widetilde{\mu }^{(1)} , \end{aligned}$$
(A.32)
$$\begin{aligned} {\mathscr {L}\widetilde{\phi }^{(3)}}&= 2\nabla _x\partial _z\widetilde{\phi }^{(2)}\cdot \nabla d^{(0)} +\partial _z\widetilde{\phi }^{(2)}\Delta d^{(0)}+\partial _z\theta \Delta d^{(2)}+\widetilde{\mu }^{(2)}. \end{aligned}$$
(A.33a)

We determine \(\mu _2(x,t)\) in (A.31) so that (A.33b) satisfies (A.2), i.e.

$$\begin{aligned} \big (\Delta d^{(2)}+\mu _2\big )\sigma&=-\left( \nabla d^{(0)}\cdot \nabla {D^{(0)}} +\tfrac{1}{2}\Delta d^{(0)}{D^{(0)}}\right) \int _{\mathbb {R}}\int _{z}^{+\infty }\tau (\theta '(\tau ))^2d\tau \mathrm{dz} \nonumber \\&\quad -\Delta d^{(0)}{D^{(0)}}\int _{\mathbb {R}}(\theta ')^2\gamma _1(z)\mathrm{dz} -\nabla d^{(0)}\cdot \nabla {D^{(0)}}\int _{\mathbb {R}}(\theta ')^2\gamma _2(z)\mathrm{dz} \nonumber \\&\quad -\chi ^{(0)}d^{(0)}\int _{\mathbb {R}} (\theta '(z))^2\gamma _3(z)\mathrm{dz}. \end{aligned}$$
(A.33b)

To prove (A.34), it follows from (A.24) and integration by parts that

$$\begin{aligned}&\int _{\mathbb {R}}\left( 2\nabla _x\partial _z\widetilde{\phi }^{(2)}\cdot \nabla d^{(0)} +\partial _z\widetilde{\phi }^{(2)}\Delta d^{(0)}+\partial _z\theta \Delta d^{(2)}\right) \theta '\mathrm{dz} \nonumber \\&=-\big (2\nabla d^{(0)}\cdot \nabla D^{(0)}+D^{(0)}\Delta d^{(0)}\big )\int _{\mathbb {R}}\alpha \theta '\theta ''\mathrm{dz}+\Delta d^{(2)}\sigma \nonumber \\&=\left( \nabla d^{(0)}\cdot \nabla {D^{(0)}} +\tfrac{1}{2}\Delta d^{(0)}{D^{(0)}}\right) \int _{\mathbb {R}}\int _{z}^{+\infty }\tau (\theta '(\tau ))^2d\tau \mathrm{dz}+\Delta d^{(2)}\sigma . \end{aligned}$$
(A.34)

This together with (A.31) leads to (A.34). So we can use (A.34) to rewrite (A.31) as

$$\begin{aligned} \widetilde{\mu }^{(2)}(z,x,t)&=-\Delta d^{(2)}(x,t)\theta '(z)+D^{(1)}(x,t)z\theta '(z)+\widetilde{\Psi }^{(0)}(z,x,t), \end{aligned}$$
(A.35)

where \(\widetilde{\Psi }^{(0)}\) only depends on 0-order terms:

$$\begin{aligned} \widetilde{\Psi }^{(0)}&=\Delta d^{(0)}D^{(0)}\theta '\gamma _1+\nabla d^{(0)}\cdot \nabla D^{(0)}\theta '\gamma _2 \nonumber \\&\quad - (2\sigma )^{-1}\left( \int _{\mathbb {R}}\int _{z}^{+\infty }\tau (\theta '(\tau ))^2d\tau \mathrm{dz}\right) \bigg (\Delta d^{(0)}D^{(0)}+2\nabla d^{(0)}\cdot \nabla D^{(0)}\bigg )\theta ' \nonumber \\&\quad -\sigma ^{-1}\bigg (\Delta d^{(0)}{D^{(0)}}\int _{\mathbb {R}}(\theta ')^2\gamma _1(z)\mathrm{dz} +\nabla d^{(0)}\cdot \nabla {D^{(0)}}\int _{\mathbb {R}}(\theta ')^2\gamma _2(z)\mathrm{dz}\bigg )\theta ' \nonumber \\&\quad -\sigma ^{-1}\bigg (\int _{\mathbb {R}}(\theta '(z))^2 \gamma _3(z)\mathrm{dz}\bigg )\chi ^{(0)}d^{(0)}\theta '. \end{aligned}$$
(A.36)

Finally, applying Lemma A.1 to (A.33b) yields a solution \(\widetilde{\phi }^{(3)}\):

Lemma A.5

\(\widetilde{\Psi }^{(0)}\) satisfies (A.1) and the equation (A.33b) has a unique smooth solution \(\widetilde{\phi }^{(3)}\) depending up to 1-order terms, satisfying \(\widetilde{\phi }^{(3)}|_{z=0}=0\) and (A.3).

\(d^{(1)}\) is determined so that the right hand side of (A.33a) fulfills (A.2):

Lemma A.6

There exists \(\Xi ^{(0)}(x,t)\) depending on 0-order terms such that

$$\begin{aligned}&\mathscr {G}_1d^{(1)}=\tfrac{\overline{\sigma }}{\sigma }\big (\chi ^{(0)}d^{(1)} +\chi ^{(1)}d^{(0)}\big )+\Xi ^{(0)}~\text {in}~\Gamma ^0(3\delta ), \end{aligned}$$
(A.37)
$$\begin{aligned}&\text {where}\quad \mathscr {G}_1d^{(1)}\triangleq \partial _td^{(1)}+\Delta ^2d^{(1)}-\sum \limits _{i=0,1}\left( \nabla D^{(i)}\cdot \nabla d^{(1-i)}+ D^{(i)}\Delta d^{(1-i)}\right) . \end{aligned}$$
(A.38)

Proof

We note that \(f'''(\theta )(\theta '(z))^3\alpha (z) z\) is an odd function, so it follows from (A.22), (A.24) and (A.27) that

$$\begin{aligned} -\int _{\mathbb {R}}f'''(\theta )\widetilde{\phi }^{(2)}\widetilde{\mu }^{(1)}\theta '\mathrm{dz}&=\Delta d^{(1)}\int _{\mathbb {R}}f'''(\theta )\widetilde{\phi }^{(2)}(\theta ')^2 \mathrm{dz}=\frac{\sigma }{2}D^{(0)}\Delta d^{(1)}. \end{aligned}$$
(A.39)

Using (A.17), (A.33b) and (A.24), we can proceed in the same way as we obtain (A.27) and yield

$$\begin{aligned}&-\int _{\mathbb {R}}f'''(\theta )\widetilde{\phi }^{(3)}\widetilde{\mu }^{(0)}\theta '\mathrm{dz}=\Delta d^{(0)}\int _{\mathbb {R}}f'''(\theta )\widetilde{\phi }^{(3)}(\theta ')^2\mathrm{dz} \nonumber \\&=\Delta d^{(0)}\int _{\mathbb {R}}\partial _z\left( 2\nabla _x\partial _z\widetilde{\phi }^{(2)}\cdot \nabla d^{(0)} +\partial _z\widetilde{\phi }^{(2)}\Delta d^{(0)}+\partial _z\theta \Delta d^{(2)}+\widetilde{\mu }^{(2)}\right) \theta '\mathrm{dz} \nonumber \\&=-\Delta d^{(0)}\int _{\mathbb {R}}\widetilde{\mu }^{(2)}\theta ''\mathrm{dz}. \end{aligned}$$

This combined with (A.36) leads to

$$\begin{aligned}&-\int _{\mathbb {R}}f'''(\theta )\widetilde{\phi }^{(3)}\widetilde{\mu }^{(0)}\theta '\mathrm{dz} \nonumber \\&=-\Delta d^{(0)}\int _{\mathbb {R}}\big (-\Delta d^{(2)}\theta '(z)+D^{(1)}z\theta '(z)+\widetilde{\Psi }^{(0)}(z,x,t)\big )\theta ''\mathrm{dz} \nonumber \\&=\frac{\sigma }{2}D^{(1)}\Delta d^{(0)}-\Delta d^{(0)}\int _{\mathbb {R}}\widetilde{\Psi }^{(0)}(z,x,t)\theta ''\mathrm{dz}. \end{aligned}$$
(A.40)

We continue treating the terms on the right hand side of (A.33a). It follows from (A.17), (A.22), and (A.36) that

$$\begin{aligned}&\int _{\mathbb {R}}\left( 2\nabla _x\partial _z\widetilde{\mu }^{(2)}\cdot \nabla d^{(0)} +2\nabla _x\partial _z\widetilde{\mu }^{(0)}\cdot \nabla d^{(2)}+2\nabla _x\partial _z\widetilde{\mu }^{(1)}\cdot \nabla d^{(1)}\right) \theta '\mathrm{dz} \nonumber \\&=\sigma \big (\nabla D^{(1)}\cdot \nabla d^{(0)}+\nabla D^{(0)}\cdot \nabla d^{(1)}\big ) -2\nabla d^{(0)}\cdot \int _{\mathbb {R}}\nabla _x\widetilde{\Psi }^{(0)}(z,x,t)\theta ''\mathrm{dz}. \end{aligned}$$

Moreover, we have the following two identities:

$$\begin{aligned}&\int _{\mathbb {R}}\left( \partial _z\widetilde{\mu }^{(2)}\Delta d^{(0)}+\partial _z\widetilde{\mu }^{(0)}\Delta d^{(2)}+\partial _z\widetilde{\mu }^{(1)}\Delta d^{(1)}\right) \theta '\mathrm{dz} \nonumber \\&\qquad =\frac{\sigma }{2}\big (D^{(1)}\Delta d^{(0)}+D^{(0)}\Delta d^{(1)}\big ) -\Delta d^{(0)}\int _{\mathbb {R}}\widetilde{\Psi }^{(0)}(z,x,t)\theta ''\mathrm{dz},\\&\int _{\mathbb {R}} \big (-\partial _z\theta \partial _td^{(1)}+\Delta _x\widetilde{\mu }^{(1)}\big )\theta '\mathrm{dz}=-\sigma \big (\partial _td^{(1)}+\Delta ^2d^{(1)}\big ). \end{aligned}$$
(A.41)

Therefore, using the notation (A.39) , we deduce that \(d^{(1)}\) satisfies (A.38) and

$$\begin{aligned} \Xi ^{(0)}=-\frac{2}{\sigma }\nabla d^{(0)}\cdot \int _{\mathbb {R}}\nabla _x\widetilde{\Psi }^{(0)}(z,x,t)\theta ''\mathrm{dz}-\frac{2}{\sigma }\Delta d^{(0)}\int _{\mathbb {R}}\widetilde{\Psi }^{(0)}(z,x,t)\theta ''\mathrm{dz}. \end{aligned}$$

To determine \(d^{(1)}\) and \(\chi ^{(1)}\) so that (A.38) holds, we need the following result:

Corollary A.7

The following equation of \(d^{(1)}\) has a local in time classical solution:

$$\begin{aligned} \mathscr {G}_1d^{(1)}=\sigma ^{-1}\overline{\sigma }\chi ^{(0)}d^{(1)}+\Xi ^{(0)}~\text {on}~\Gamma ^0. \end{aligned}$$
(A.42)

Moreover, if we define \(\chi ^{(1)}\) by

$$\begin{aligned} \chi ^{(1)}\triangleq \left\{ \begin{array}{ll} \sigma (\overline{\sigma })^{-1}\left( \mathscr {G}_1d^{(1)}-\sigma ^{-1}\overline{\sigma }\chi ^{(0)}d^{(1)}-\Xi ^{(0)}\right) /d^{(0)}&{} \ \text {in}~\Gamma ^0(3\delta )\backslash \Gamma ^0,\\ \sigma \big (\overline{\sigma }\big )^{-1}\nabla \big ( \mathscr {G}_1d^{(1)}-\sigma ^{-1}\overline{\sigma }\chi ^{(0)}d^{(1)}-\Xi ^{(0)}\big )\cdot \nabla d^{(0)}&{} \ \text {on}~\Gamma ^0, \end{array} \right. \end{aligned}$$
(A.43)

then (A.38) holds in \(\Gamma ^0(3\delta )\).

Proof

Note that \(d^{(1)}\) might not fulfill (A.44) in \(\Gamma ^0(3\delta )\). Since \(\partial _r d^{(1)}=0\) (see (2.2)), it suffices to determine \(d^{(1)}\) on \(\Gamma ^0\) and then extends constantly in the normal direction. Using (6.9) we can convert mixed derivatives of \(d^{(1)}\) into tangential ones. This combined with (A.30) and (A.44) yields

$$\begin{aligned} \partial _td^{(1)}+\Delta ^2d^{(1)}-(\nabla d^{(0)}\otimes \nabla d^{(0)}):\nabla ^2 \Delta d^{(1)} =\mathfrak {T}(d^{(1)}), \end{aligned}$$
(A.44)

where \(\mathfrak {T}\) is a generic term that includes at most third-order (tangential) derivatives of \(d^{(1)}\). Using (6.9), (2.9) and (2.11) yields

$$\begin{aligned} \begin{aligned}&\Delta ^2d^{(1)}-(\nabla d^{(0)}\otimes \nabla d^{(0)}):\nabla ^2 \Delta d^{(1)}\\ =&{\text {div}}_{\Gamma _0} (\nabla \Delta _{\Gamma _0} d^{(1)})=\Delta ^2_{\Gamma _0} d^{(1)}+\left( {\text {div}}_{\Gamma _0}\mathbf {n}\right) \partial _r (\Delta _{\Gamma _0}d^{(1)}). \end{aligned} \end{aligned}$$
(A.45)

So we can write (A.46) as (see [2] for similar arguments)

$$\begin{aligned} \partial _td^{(1)}+ \Delta _{\Gamma _0}^2 d^{(1)} =\mathfrak {T}(d^{(1)}). \end{aligned}$$
(A.46)

This is a surface evolutionary equation and has a local in time smooth solution.

1.4 \(\varepsilon ^{K}\)-scale

With Definition A.4, we set the following statements indexed by K:

$$\begin{aligned} A_K&:\widetilde{\phi }^{(i)}~\text {depends on terms of order up to}~(i-2);~2\le i\le K+1, \end{aligned}$$
(A.47)
$$\begin{aligned} B_K&:\widetilde{\mu }^{(i)}=-\Delta d^{(i)}\theta '+{D^{(i-1)}z\theta '}+\widetilde{\Psi }^{(i-2)}~\text {for}~2\le i\le K,\end{aligned}$$
(A.48)
$$\begin{aligned} C_K&:\widetilde{\mu }^{(K+1)}=\mu _{K+1}(x,t)\theta '+{D^{(K)}z\theta '} +\widetilde{\Psi }^{(K-1)},\end{aligned}$$
(A.49a)
$$\begin{aligned} D_K&: (d^{(K)}, \chi ^{(K)})~\text {depend on terms up to order}\, (K-1)\,\text {through}\nonumber \\&\qquad \mathscr {G}_K d^{(K)}=\sigma ^{-1}\overline{\sigma }\big (\chi ^{(0)}d^{(K)}+\chi ^{(K)}d^{(0)}\big )+\Xi ^{(K-1)}, \end{aligned}$$
(A.49b)

where \(D^{(i)}\) is defined by (3.4), \(\widetilde{\Psi }^{(K)}\) satisfies the decay property (A.3), and

$$\begin{aligned}&\mathscr {G}_K d^{(K)}\triangleq \partial _td^{(K)}+\Delta ^2d^{(K)}-\sum _{\ell =0,K}\left( \nabla D^{(\ell )}\cdot \nabla d^{(K-\ell )}+D^{(\ell )}\Delta d^{(K-\ell )}\right) , \end{aligned}$$
(A.49c)
$$\begin{aligned}&\chi ^{(K)}\triangleq \left\{ \begin{array}{ll} \sigma \overline{\sigma }^{-1}\left( \mathscr {G}_K d^{(K)}-\sigma ^{-1}\overline{\sigma }\chi ^{(0)}d^{(K)}-\Xi ^{(K-1)}\right) /d^{(0)}&{} \ \text {in}~\Gamma ^0(3\delta )\backslash \Gamma ^0, \\ \sigma \overline{\sigma }^{-1}\nabla \big (\mathscr {G}_K d^{(K)}-\sigma ^{-1}\overline{\sigma }\chi ^{(0)}d^{(K)}-\Xi ^{(K-1)}\big )\cdot \nabla d^{(0)}&{} \ \text {in}~\Gamma ^0. \end{array} \right. \end{aligned}$$
(A.49d)

Lemma A.8

The statements \((A_1,B_1,C_1)\) and \((A_2,B_2,C_2,D_1)\) are valid.

Proof

Recall the results in previous subsections. Using \(d^{(1)}\) we can determine \(\widetilde{\mu }^{(1)}\) through (A.22). Using \(d^{(2)}\) determined by (A.50) with \(K=2\), we obtain \(\widetilde{\mu }^{(2)}\) by (A.36) and \(\widetilde{\phi }^{(3)}\) by solving (A.33b). Finally we can rewrite (A.33a) as

$$\begin{aligned} \mathscr {L}\widetilde{\mu }^{(3)}&=-2\theta ''D^{(2)}+\widetilde{\Psi }^{(1)},~\text {where}~D^{(2)}\nonumber \\&=\sum \limits _{0\le \ell \le 2}\left( \nabla \Delta d^{(\ell )}\cdot \nabla d^{(2-\ell )}+\tfrac{1}{2}\Delta d^{(\ell )}\Delta d^{(2-\ell )}\right) , \end{aligned}$$
(A.50)

and \(\widetilde{\Psi }^{(1)}\) satisfies (A.1). Applying (A.4) yields

$$\begin{aligned} \widetilde{\mu }^{(3)}(z,x,t)=\mu _3(x,t)\theta '(z)+D^{(2)}(x,t)z\theta '(z)+\widetilde{\Psi }^{(1)}(z,x,t). \end{aligned}$$
(A.51)

where \(\widetilde{\Psi }^{(1)}\) satisfies (A.1), and \(\mu _3(x,t)\) shall be determined by the \(\varepsilon ^4\)-scale.

We argue by induction on K. Assuming \(\left( A_K,B_K,C_K,D_{K-1}\right) \). We substitute (A.6) into (A.11)–(A.12) and use () and (A.18) to sort all terms of \(\varepsilon ^{K+2}\)-scale:

$$\begin{aligned} \mathscr {L}\widetilde{\mu }^{(K+2)} =&-\sum \limits _{2\le i\le K+2}\left( f'''(\theta )\widetilde{\phi }^{(i)}+g_{i-1}^*\big (\widetilde{\phi }^{(0)},\cdots , \widetilde{\phi }^{(i-1)}\big )\right) \widetilde{\mu }^{(K+2-i)} \nonumber \\&+2\sum \limits _{0\le i\le K+1}\nabla _x\partial _z\widetilde{\mu }^{(i)}\cdot \nabla d^{(K+1-i)} +\sum \limits _{0\le i\le K+1}\partial _z\widetilde{\mu }^{(i)}\Delta d^{(K+1-i)} \nonumber \\&-\sum \limits _{1\le i\le K}\partial _z\widetilde{\phi }^{(i)}\partial _td^{(K-i)}-\partial _z\theta \partial _td^{(K)} +\Delta _x\widetilde{\mu }^{(K)}-\partial _t\widetilde{\phi }^{(K-1)} \nonumber \\&+\Big (\chi ^{(0)}d^{(K)}+\sum \limits _{1\le i\le K-1}\chi ^{(i)} d^{(K-i)}+\chi ^{(K)}d^{(0)}\Big )\eta '-\chi ^{(K-1)}z\eta ', \end{aligned}$$
(A.52)
$$\begin{aligned} \mathscr {L}\widetilde{\phi }^{(K+2)}=&-g_{K+1}^*\left( \widetilde{\phi }^{(0)},\cdots , \widetilde{\phi }^{(K+1)}\right) +2\sum \limits _{2\le i\le K+1}\nabla _x\partial _z\widetilde{\phi }^{(i)}\cdot \nabla d^{(K+1-i)} \nonumber \\&\quad +\theta '\Delta d^{(K+1)}+\sum \limits _{2\le i\le K+1} \partial _z\widetilde{\phi }^{(i)}\cdot \Delta d^{(K+1-i)}+\widetilde{\mu }^{(K+1)}+\Delta _x\widetilde{\phi }^{(K)}. \end{aligned}$$
(A.53)

Using \(A_K\) and \(C_K\), we can write (A.54b) as

$$\begin{aligned} {\mathscr {L}\widetilde{\phi }^{(K+2)}=\theta '\Delta d^{(K+1)}+\mu _{K+1}(x,t)\theta '+D^{(K)} z\theta '+\widetilde{\Psi }^{(K-1)}.} \end{aligned}$$
(A.54a)

To fulfill the compatibility condition (A.2), we choose \(\mu _{K+1}=-\Delta d^{(K+1)}+{\Xi ^{(K-1)}}\). This together with \(C_K\) implies \(B_{K+1}\), and reduces (A.55) to the following equation, which leads to \(A_{K+1}\):

$$\begin{aligned} {\mathscr {L}\widetilde{\phi }^{(K+2)}=D^{(K)} z\theta '+\widetilde{\Psi }^{(K-1)}.} \end{aligned}$$
(A.54b)

Proposition A.9

The equation (A.54a) can be written as

$$\begin{aligned} \mathscr {L}\widetilde{\mu }^{(K+2)}={-2\sum _{\ell =0,K+1} \nabla \Delta d^{(\ell )}\cdot \nabla d^{(K+1-\ell )}\theta ''}-2\Delta d^{(0)}\Delta d^{(K+1)}\theta ''+\widetilde{\Psi }^{(K)}, \end{aligned}$$
(A.55)

and its compatibility condition is guaranteed by \(D_K\).

Proof

We consider the right hand side of (A.54a). Using (A.18), (A.49a) and (A.49b),

$$\begin{aligned}&-\sum \limits _{2\le i\le K+2}\left( f'''(\theta )\widetilde{\phi }^{(i)}+ g_{i-1}^*\big (\widetilde{\phi }^{(0)},\cdots , \widetilde{\phi }^{(i-1)}\big )\right) \widetilde{\mu }^{(K+2-i)} \nonumber \\&=-f'''(\theta )\widetilde{\phi }^{(2)}\widetilde{\mu } ^{(K)}-f'''(\theta )\widetilde{\phi }^{(K+2)}\widetilde{\mu }^{(0)} -g_{K+1}^*\big (\widetilde{\phi }^{(0)},\cdots , \widetilde{\phi }^{(K+1)}\big ) \nonumber \\&\qquad -\sum \limits _{3\le i\le K+1} \left( f'''(\theta )\widetilde{\phi }^{(i)}+g_{i-1}^*\big (\widetilde{\phi }^{(0)},\cdots , \widetilde{\phi }^{(i-1)}\big )\right) \widetilde{\mu }^{(K+2-i)} \nonumber \\&=\Delta d^{(K)}f'''(\theta )\widetilde{\phi }^{(2)}\theta ' -f'''(\theta ) \widetilde{\phi }^{(K+2)}\widetilde{\mu }^{(0)}+\widetilde{\Psi }^{(K-1)} \end{aligned}$$

In a similar way,

$$\begin{aligned}&2\sum \limits _{0\le i\le K+1}\nabla _x\partial _z\widetilde{\mu }^{(i)}\cdot \nabla d^{(K+1-i)}\nonumber \\&=2\nabla _x\partial _z\widetilde{\mu }^{(0)}\cdot \nabla d^{(K+1)}+2\nabla _x\partial _z\widetilde{\mu }^{(1)}\cdot \nabla d^{(K)}+2\nabla _x\partial _z\widetilde{\mu }^{(K)}\cdot \nabla d^{(1)} \nonumber \\&\quad +2\nabla _x\partial _z\widetilde{\mu }^{(K+1)}\cdot \nabla d^{(0)}+2\sum \limits _{2\le i\le K-1}\nabla _x\partial _z\widetilde{\mu }^{(i)}\cdot \nabla d^{(K+1-i)} \nonumber \\&{=-2\sum _{\ell =0,1,K,K+1} \nabla \Delta d^{(\ell )}\cdot \nabla d^{(K+1-\ell )}\theta ''} \nonumber \\&\quad +2\left( \nabla D^{(K)}\cdot \nabla d^{(0)}+\nabla D^{(0)}\cdot \nabla d^{(K)}\right) (z\theta ')'+\widetilde{\Psi }^{(K-1)},\\&\quad \sum \limits _{0\le i\le K+1}\partial _z\widetilde{\mu }^{(i)}\Delta d^{(K+1-i)} \nonumber \\&=\partial _z\widetilde{\mu }^{(0)}\Delta d^{(K+1)}+\partial _z\widetilde{\mu }^{(1)}\Delta d^{(K)}+\sum \limits _{2\le i\le K-1}\partial _z\widetilde{\mu }^{(i)}\Delta d^{(K+1-i)}\\&\quad +\partial _z\widetilde{\mu }^{(K)}\Delta d^{(1)}+\partial _z\widetilde{\mu }^{(K+1)}\Delta d^{(0)} \nonumber \\&=-2(\Delta d^{(0)}\Delta d^{(K+1)}+\Delta d^{(1)}\Delta d^{(K)})\theta ''+(D^{(0)}\Delta d^{(K)}\\&\quad +D^{(K)}\Delta d^{(0)})(z\theta ')'+\widetilde{\Psi }^{(K-1)}. \end{aligned}$$

Finally,

$$\begin{aligned}&-\sum \limits _{1\le i\le K}\partial _z\widetilde{\phi }^{(i)}\partial _td^{(K-i)}-\partial _z\theta \partial _td^{(K)} +\Delta _x\widetilde{\mu }^{(K)}-\partial _t\widetilde{\phi }^{(K-1)}\\&\qquad +\big (\chi ^{(0)}d^{(K)}+\sum \limits _{1\le i\le K-1}\chi ^{(i)}d^{(K-i)} +\chi ^{(K)}d^{(0)}\big )\eta '-\chi ^{(K-1)}z\eta ' \\&=-\big (\partial _td^{(K)}+\Delta ^2d^{(K)}\big )\theta '+\eta ' \big (\chi ^{(0)}d^{(K)}+\chi ^{(K)}d^{(0)}\big )+\widetilde{\Psi }^{(K-1)}. \end{aligned}$$

The above four results imply (A.57). They also imply the compatibility condition

$$\begin{aligned}&\sigma \big (\partial _td^{(K)}+\Delta ^2d^{(K)}\big )\nonumber \\&=\Delta d^{(K)}\int _{\mathbb {R}}f'''(\theta )\widetilde{\phi }^{(2)} (\theta ')^2\mathrm{dz}-\int _{\mathbb {R}}f'''(\theta )\widetilde{\phi } ^{(K+2)}\widetilde{\mu }^{(0)}\theta '\mathrm{dz}+\int _{\mathbb {R}}\widetilde{\Psi }^{(K-1)}\theta ' \mathrm{dz} \nonumber \\&\quad +\sigma \left( \nabla D^{(K)}\cdot \nabla d^{(0)}+\nabla D^{(0)}\cdot \nabla d^{(K)}+\tfrac{1}{2}\big (D^{(0)}\Delta d^{(K)}+D^{(K)}\Delta d^{(0)}\big )\right) . \end{aligned}$$
(A.56)

It remains to calculate the first two terms on the right hand side of (A.58). Using (A.27) yields

$$\begin{aligned} \Delta d^{(K)}\int _{\mathbb {R}}f'''(\theta )\widetilde{\phi }^{(2)}(\theta ')^2\mathrm{dz} =\frac{\sigma }{2}D^{(0)}\Delta d^{(K)}. \end{aligned}$$
(A.57)

With the aid of (A.17) and (A.15) we have

$$\begin{aligned} -\int _{\mathbb {R}}f'''(\theta )\widetilde{\phi }^{(K+2)}\widetilde{\mu }^{(0)}\theta '\mathrm{dz}&=\Delta d^{(0)}\int _{\mathbb {R}}f'''(\theta )\widetilde{\phi }^{(K+2)}(\theta ')^2\mathrm{dz} \nonumber \\&=\Delta d^{(0)}\int _{\mathbb {R}}\left( \partial _z\big (\mathscr {L}\widetilde{\phi }^{(K+2)})\theta '-\big (\mathscr {L}\partial _z\widetilde{\phi }^{(K+2)}\big )\theta '\right) \mathrm{dz} \nonumber \\&=-\Delta d^{(0)}\int _{\mathbb {R}}\mathscr {L}\widetilde{\phi }^{(K+2)}\theta ''\mathrm{dz}. \end{aligned}$$

In view of (A.56), the above two formulas together lead to

$$\begin{aligned} -\int _{\mathbb {R}}f'''(\theta )\widetilde{\phi }^{(K+2)} \widetilde{\mu }^{(0)}\theta '\mathrm{dz}&=-\Delta d^{(0)}\int _{\mathbb {R}}\left( D^{(K)}z\theta '+\widetilde{\Psi }^{(K-1)}\right) \theta ''\mathrm{dz}\\&=\frac{\sigma }{2}D^{(K)}\Delta d^{(0)}+\Xi ^{(K-1)}. \end{aligned}$$

Substituting (A.59) and the above formula into (A.58) leads to \(D_K\).

Using (3.4), we can write (A.57) by

$$\begin{aligned} \mathscr {L}\widetilde{\mu }^{(K+2)}=-2D^{(K+1)}\theta ''+\widetilde{\Psi }^{(K)}(z,x,t). \end{aligned}$$
(A.58)

Applying Lemma A.1 to the above equation implies \(C_{K+1}\). To conclude \(D_K\), we need:

Corollary A.10

The following equation of \(d^{(K)}\) has a local in time classical solution

$$\begin{aligned} \mathscr {G}_K d^{(K)}=\sigma ^{-1} \overline{\sigma }\chi ^{(0)}d^{(K)}+\Xi ^{(K-1)}~\text {on}~\Gamma ^0. \end{aligned}$$
(A.59)

Moreover, if we define \(\chi ^{(K)}\) by (A.51), then \(D_K\) holds in \(\Gamma ^0(3\delta )\).

Note that the local in time solution follows from the same argument for Corollary A.7. So we have shown \((A_{K+1}, B_{K+1},C_{K+1}, D_K)\) and the induction for (A.49) is completed.

Proposition A.11

Assume (1.5) has a smooth solution \(\Gamma ^0\) within [0, T], starting from a smooth closed hypersurface \(\Gamma ^0_0\subset \mathbb {R}^N\), and let \(d^{(0)}\) be the signed-distance, defined in \(\Gamma ^0(3\delta )\). Then we can construct the inner expansion with Ansatz (A.6) so that for \(i\ge 1\)

$$\begin{aligned} D_x^\alpha D_t^\beta D_z^\gamma \widetilde{\phi }^{(i)}(z,x,t)=O(e^{-C|z|}),D_x^\alpha D_t^\beta D_z^\gamma \widetilde{\mu }^{(i)}(z,x,t)=O(e^{-C|z|}), \end{aligned}$$
(A.60)

as \(z\rightarrow \pm \infty \) for \((x,t)\in \Gamma ^0(3\delta )\) and \(0\le \alpha ,\beta ,\gamma \le 2\). Moreover,

$$\begin{aligned} \hat{\phi }^I_a(x,t)=\sum _{0\le i\le k}\varepsilon ^i\widetilde{\phi }^{(i)}(z,x,t)\big |_{z= \frac{ d^{[k]}(x,t) }{\varepsilon }},~\hat{\mu }^I_a(x,t)=\sum _{0\le i\le k}\varepsilon ^i\widetilde{\mu }^{(i)}(z,x,t)\big |_{z=\frac{d^{[k]}(x,t)}{\varepsilon }}, \end{aligned}$$
(A.61)

satisfies for \((x,t)\in \Gamma ^0(3\delta )\)

$$\begin{aligned} \varepsilon ^3\partial _t\hat{\phi }_a^I&= \varepsilon ^2\Delta \hat{\mu }_a^I-f''(\hat{\phi }_a^I)\hat{\mu }_a^I +O(\varepsilon ^{k}), \end{aligned}$$
(A.62)
$$\begin{aligned} \varepsilon \hat{\mu }_a^I&=-\varepsilon ^2\Delta \hat{\phi }_a^I+f'(\hat{\phi }_a^I) +O(\varepsilon ^{k}). \end{aligned}$$
(A.63)

Proof

It follows from (A.6) and chain-rule that

$$\begin{aligned}&-\left( \varepsilon ^3\partial _t\hat{\phi }^I_a-\varepsilon ^2\Delta \hat{\mu }^I_a+f''(\hat{\phi }^I_a)\hat{\mu }^I_a\right) \nonumber \\ =&\partial _z^2\widetilde{\mu }^\varepsilon \big |\nabla d^{[k]}\big |^2-f''(\widetilde{\phi }^\varepsilon )\widetilde{\mu }^\varepsilon +2\varepsilon \nabla \partial _z\widetilde{\mu }^\varepsilon \cdot \nabla d^{[k]}\nonumber \\&+\varepsilon \partial _z\widetilde{\mu }^\varepsilon \Delta d^{[k]}- \varepsilon ^2\partial _z\widetilde{\phi }^\varepsilon \partial _td^{[k]}+\varepsilon ^2 \Delta _x\widetilde{\mu }^\varepsilon -\varepsilon ^3 \partial _t \widetilde{\phi }^\varepsilon ,\qquad \text {with}~z=d^{[k]}(x,t)/\varepsilon . \end{aligned}$$

If we replace \(d_\varepsilon \) by \(d^{[k]}\) in (A.10), and compare it with the above formula, then we arrive at (A.64). In a similar way we can show (A.65) and the details are omitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, M., Liu, Y. Phase-Field Approximation of the Willmore Flow. Arch Rational Mech Anal 241, 1655–1706 (2021). https://doi.org/10.1007/s00205-021-01678-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01678-9

Navigation