Skip to main content
Log in

Process Parameters Effect Investigations on Viscosity of Water-ethylene Glycol-based α-alumina Nanofluids: An Ultrasonic Experimental and Statistical Approach

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Stable α-alumina-water-ethylene glycol (WEG) based nanofluids with a low viscosity requirement are preferable for promising engineering applications. Viscosity of nanofluids is a significant parameter that decides the flow characteristics and pumping pressure requirements. In this study, α-alumina nanoparticles (spherical morphology with 40 nm) dispersed in WEG mixture in a ratio of 50:50 (v/v) using an ultra-sonication process. Further analysis of the effects of process parameters on the viscosity of prepared nanofluid, including volume concentrations (0.01%–0.2%), temperatures (30-45 °C), and sonication times (0–4 h). A decrease in viscosity of 11.36% was observed for 0.2% volume concentration as sonication time increased from 0 to 3 h at a process temperature of 45 °C. The viscosity value of nanofluids approaches a stable value at 3 h of sonication. No significant sonication ‘null effect’ was required for lower concentrations irrespective of the temperature and sonication time, yielding low viscosity. At the same time, clusters were observed at a higher volume concentration under a minimal sonication time (1 h) resulting in a higher viscosity. On the other hand, the viscosity of nanofluid was reduced with the help of an increase in sonication duration and process temperature. Statistical analysis ranks a higher degree to volume concentration of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Choi, S.U.S.; Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Am. Soc. Mech. Eng. Fluids Eng. Div. FED. 231, 99–105 (1995)

    Google Scholar 

  2. Ghadimi, A.; Saidur, R.; Metselaar, H.S.C.: A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 54, 4051–4068 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014

    Article  Google Scholar 

  3. Murshed, S.M.S.; Estellé, P.: A state of the art review on viscosity of nanofluids. Renew. Sustain. Energy Rev. 76, 1134–1152 (2017). https://doi.org/10.1016/j.rser.2017.03.113

    Article  Google Scholar 

  4. Gbadeyan, J.A.; Titiloye, E.O.; Adeosun, A.T.: Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip. Heliyon 6, e03076 (2020). https://doi.org/10.1016/j.heliyon.2019.e03076

    Article  Google Scholar 

  5. Zarei, J.M.; Keshavarz, P.; Zerafat, M.M.; Sabbaghi, S.: Experimental investigation on the thermal conductivity of Triethylene Glycol-Water-CuO nanofluids as a desiccant for dehydration process. Int. J. Nano Dimens. 11, 74–87 (2020)

    Google Scholar 

  6. Babar, H.; Sajid, M.; Ali, H.: Viscosity of hybrid nanofluids: a critical review. Therm. Sci. 23, 1713–1754 (2019). https://doi.org/10.2298/tsci181128015b

    Article  Google Scholar 

  7. Sharifpur, M.; Adio, S.A.; Meyer, J.P.: Experimental investigation and model development for effective viscosity of Al2O3–glycerol nanofluids by using dimensional analysis and GMDH-NN methods. Int. Commun. Heat Mass Transf. 68, 208–219 (2015)

    Article  Google Scholar 

  8. Mishra, P.C.; Mukherjee, S.; Nayak, S.K.; Panda, A.: A brief review on viscosity of nanofluids. Int. Nano Lett. 4, 109–120 (2014). https://doi.org/10.1007/s40089-014-0126-3

    Article  Google Scholar 

  9. Sekrani, G.; Poncet, S.: Ethylene- and propylene-glycol based nanofluids: a litterature review on their thermophysical properties and thermal performances. Appl. Sci. (2018). https://doi.org/10.3390/app8112311

    Article  Google Scholar 

  10. Saleemi, M.; Vanapalli, S.; Nikkam, N., et al.: Classical behavior of alumina (Al2O3) nanofluids in antifrogen N with experimental evidence. J. Nanomater. 2015, 1–7 (2015)

    Article  Google Scholar 

  11. Okonkwo, E.C., Wole-Osho, I., Almanassra, I.W. et al.: An updated review of nanofluids in various heat transfer devices. J. Therm. Anal. Calorim. 1–56 (2020)

  12. Aishwarya, V.; Suganthi, K.S.; Rajan, K.S.: Transport properties of nano manganese ferrite-propylene glycol dispersion (nanofluids): New observations and discussion. J. Nanoparticle Res. (2013). https://doi.org/10.1007/s11051-013-1774-3

    Article  Google Scholar 

  13. Patra, A.K.; Nayak, M.K.; Misra, A.: Viscosity of nanofluids-a review. Int. J. Thermofluid Sci. Technol. 7, 70202 (2020)

    Article  Google Scholar 

  14. Thomas, S.; Sobhan, C.B.P.: A review of experimental investigations on thermal phenomena in nanofluids. Nano Res. Lett. 6, 377 (2011)

    Article  Google Scholar 

  15. Murshed, S.M.S.; De. Castro, C.A.N.: Superior thermal features of carbon nanotubes-based nanofluids–a review. Renew Sustain. Energy Rev. 37, 155–167 (2014)

    Article  Google Scholar 

  16. Aybar, H.Ş; Sharifpur, M.; Azizian, M.R., et al.: A review of thermal conductivity models for nanofluids. Heat Transf. Eng. 36, 1085–1110 (2015)

    Article  Google Scholar 

  17. Estellé, P.; Halelfadl, S.; Maré, T.: Lignin as dispersant for water-based carbon nanotubes nanofluids: impact on viscosity and thermal conductivity. Int. Commun. Heat Mass Transf. 57, 8–12 (2014)

    Article  Google Scholar 

  18. Qiu, L.; Zhu, N.; Feng, Y., et al.: A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids. Phys. Rep. 843, 1–81 (2020). https://doi.org/10.1016/j.physrep.2019.12.001

    Article  Google Scholar 

  19. Bashirnezhad, K.; Bazri, S.; Safaei, M.R., et al.: Viscosity of nanofluids: a review of recent experimental studies. Int. Commun. Heat Mass Transf. 73, 114–123 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.02.005

    Article  Google Scholar 

  20. Meyer, J.P.; Adio, S.A.; Sharifpur, M.; Nwosu, P.N.: The Viscosity of nanofluids: a review of the theoretical, empirical, and numerical models. Heat Transf. Eng. 37, 387–421 (2016). https://doi.org/10.1080/01457632.2015.1057447

    Article  Google Scholar 

  21. Yang, L.; Xu, J.; Du, K.; Zhang, X.: Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technol 317, 348–369 (2017). https://doi.org/10.1016/j.powtec.2017.04.061

    Article  Google Scholar 

  22. Routbort, J.L.; Singh, D.; Timofeeva, E.V.; Yu, W.; France, D.M.: Pumping power of nanofluids in a flowing system. J. Nanoparticle Res. 13, 931–937 (2011). https://doi.org/10.1007/s11051-010-0197-7

    Article  Google Scholar 

  23. Soto, A.; Gaster, T.; Golden, C.; Vafaei, S.: Theoretical investigation of thermal conductivity and viscosity of nanofluids. Proc. Therm. Fluids Eng. Summer Conf. (2020). https://doi.org/10.1615/TFEC2020.nma.032014

    Article  Google Scholar 

  24. Suganthi, K.S.; Anusha, N.; Rajan, K.S.: Low viscous ZnO–propylene glycol nanofluid: a potential coolant candidate. J. Nanoparticle Res. 15, 1–16 (2013)

    Article  Google Scholar 

  25. Lee, J.H.; Hwang, K.S.; Jang, S.P.; Lee, B.H.; Kim, J.H.; Choi, S.U.S.; Choi, C.J.: Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transf. 51, 2651–2656 (2008)

    Article  Google Scholar 

  26. Nguyen, C.T.; Desgranges, F.; Roy, G., et al.: Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon. Int. J. heat fluid flow. 28, 1492–1506 (2007)

    Article  Google Scholar 

  27. Asadi, A.; Pourfattah, F.; Miklósszilágyi, I., et al.: Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: a comprehensive review. Ultrason. Sonochem. (2019). https://doi.org/10.1016/j.ultsonch.2019.104701

    Article  Google Scholar 

  28. Chen, Z.; Shahsavar, A.; Al-Rashed, A.; Afrand, M.: The impact of sonication and stirring durations on the thermal conductivity of alumina-liquid paraffin nanofluid: an experimental assessment. Powder Technol. 360, 1134–1142 (2020). https://doi.org/10.1016/j.powtec.2019.11.036

    Article  Google Scholar 

  29. Sonawane, S.S.; Khedkar, R.S.; Wasewar, K.L.: Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2–water, ethylene glycol, and paraffin oil nanofluids and models comparisons. J. Exp. Nanosci. 10, 310–322 (2015). https://doi.org/10.1080/17458080.2013.832421

    Article  Google Scholar 

  30. Asadi, A.; Alarifi, I.M.: Effects of ultrasonication time on stability, dynamic viscosity, and pumping power management of MWCNT-water nanofluid: an experimental study. Sci. Rep. 10, 1–10 (2020). https://doi.org/10.1038/s41598-020-71978-9

    Article  Google Scholar 

  31. Mahbubul, I.M.; Chong, T.H.; Khaleduzzaman, S.S.; Shahrul, I.M.; Saidur, R.; Long, B.D.; Amalina, M.A.: Effect of ultrasonication duration on colloidal structure and viscosity of alumina-water nanofluid. Ind. Eng. Chem. Res. 53, 6677–6684 (2014). https://doi.org/10.1021/ie500705j

    Article  Google Scholar 

  32. Yang, J.C.; Li, F.C.; Zhou, W.W.; He, Y.R.; Jiang, B.C.: Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids. Int. J. Heat Mass Transf. 55, 3160–3166 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.052

    Article  Google Scholar 

  33. Kwak, K.Y.; Kim, C.Y.: Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Australia Rheol. J. 17, 35–40 (2005)

    Google Scholar 

  34. Buonomo, B.; Manca, O.; Marinelli, L.; Nardini, S.: Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Appl. Therm. Eng. 91, 181–190 (2015). https://doi.org/10.1016/j.applthermaleng.2015.07.077

    Article  Google Scholar 

  35. Gangadevi, R.; Vinayagam, B.K.; Senthilraja, S.: Effects of sonication time and temperature on thermal conductivity of CuO/water and Al2O3/water nanofluids with and without surfactant. Mater. Today Proc. 5, 9004–9011 (2018). https://doi.org/10.1016/j.matpr.2017.12.347

    Article  Google Scholar 

  36. Adio, S.A.; Sharifpur, M.; Meyer, J.P.: Influence of ultrasonication energy on the dispersion consistency of Al2O3–glycerol nanofluid based on viscosity data, and model development for the required ultrasonication energy density. J. Exp. Nanosci. 11, 630–649 (2016). https://doi.org/10.1080/17458080.2015.1107194

    Article  Google Scholar 

  37. He, Y.; Jin, Y.; Chen, H.; Ding, Y.; Cang, D.; Lu, H.: Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int. J. Heat Mass Transfer. 50, 2272–2281 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.024

    Article  MATH  Google Scholar 

  38. Hamed Mosavian, M.T.; Zeinali Heris, S.; Etemad, S.G.; Nasr Esfahany, M.: Heat transfer enhancement by application of nano-powder. J. Nanoparticle Res. 12, 2611–2619 (2010). https://doi.org/10.1007/s11051-009-9840-6

    Article  Google Scholar 

  39. Ashrae, A.: Handbook-Fundamentals. Atlanta, USA (2005)

    Google Scholar 

  40. Yu, W.; Xie, H.; Chen, L.; Li, Y.: Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surf. A Physicochem. Eng. Asp. 355, 109–113 (2010)

    Article  Google Scholar 

  41. Sawicka, D.; Cieśliński, J.T.; Smolen, S.: A comparison of empirical correlations of viscosity and thermal conductivity of water-ethylene glycol-Al2O3 nanofluids. Nanomaterials 10, 1–24 (2020). https://doi.org/10.3390/nano10081487

    Article  Google Scholar 

  42. Beck, M.P.; Yuan, Y.; Warrier, P.; Teja, A.S.: The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures. J. Nanoparticle Res. 12, 1469–1477 (2010). https://doi.org/10.1007/s11051-009-9716-9

    Article  Google Scholar 

  43. Afrand, M.; Abedini, E.; Teimouri, H.: How the dispersion of magnesium oxide nanoparticles effects on the viscosity of water-ethylene glycol mixture: experimental evaluation and correlation development. Phys. E Low-Dimensional Syst. Nanostruct. 87, 273–280 (2017). https://doi.org/10.1016/j.physe.2016.10.027

    Article  Google Scholar 

  44. Abadeh, A.; Passandideh-Fard, M.; Maghrebi, M.J.; Mohammadi, M.: Stability and magnetization of Fe3O4/water nanofluid preparation characteristics using Taguchi method. J. Therm. Anal. Calorim. 135, 1323–1334 (2019)

    Article  Google Scholar 

  45. Sadri, R.; Ahmadi, G.; Togun, H.; Dahari, M.; Kazi, S.N.; Sadeghinezhad, E.; Zubir, N.: An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res. Lett. 9, 4–13 (2014). https://doi.org/10.1186/1556-276X-9-151

    Article  Google Scholar 

  46. Ruan, B.; Jacobi, A.M.: Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res. Lett. 7, 1–14 (2012). https://doi.org/10.1186/1556-276X-7-127

    Article  Google Scholar 

  47. Mahbubul, I.M.; Saidur, R.; Amalina, M.A.; Niza, M.E.: Influence of ultrasonication duration on rheological properties of nanofluid: an experimental study with alumina–water nanofluid. Int. Commun. Heat Mass Transf. 76, 33–40 (2016)

    Article  Google Scholar 

  48. Jarahnejad, M.; Haghighi, E.B.; Saleemi, M.; Nikkam, N.; Khodabandeh, R.; Palm, B.; Toprak, M.S.; Muhammed, M.: Experimental investigation on viscosity of water-based Al2O3 and TiO2 nanofluids. Rheol. Acta. 54, 411–422 (2015). https://doi.org/10.1007/s00397-015-0838-y

    Article  Google Scholar 

  49. Hemmat Esfe, M.; Saedodin, S.: An experimental investigation and new correlation of viscosity of ZnO-EG nanofluid at various temperatures and different solid volume fractions. Exp. Therm. Fluid Sci. 55, 1–5 (2014). https://doi.org/10.1016/j.expthermflusci.2014.02.011

    Article  Google Scholar 

  50. Kole, M.; Dey, T.K.: Effect of aggregation on the viscosity of copper oxide-gear oil nanofluids. Int. J. Therm. Sci. 50, 1741–1747 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.03.027

    Article  Google Scholar 

  51. Hemmat Esfe, M.; Rahimi Raki, H.; Sarmasti Emami, M.R.; Afrand, M.: Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technol. 342, 808–816 (2019). https://doi.org/10.1016/j.powtec.2018.10.032

    Article  Google Scholar 

  52. Toghraie, D.; Mokhtari, M.; Afrand, M.: Molecular dynamic simulation of copper and platinum nanoparticles Poiseuille flow in a nanochannels. Phys. E Low-dimensional Syst. Nanostruct. 84, 152–161 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sri Sivasubramaniya Nadar College of Engineering, Chennai for providing financial support through the SSN internal funding. We also acknowledge the technical support given by Prof. Dr. P. Ramasamy, Dean, SSN Research Centre.

Funding

This work is not funded by any agency.

Author information

Authors and Affiliations

Authors

Contributions

RP—Resources, Supervision, Validation and Visualization; LC—Conceptualization, Investigation, Data acquisition; KR—Supervision, Writing- Review and Editing.

Corresponding author

Correspondence to L. Chilambarasan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, R., Chilambarasan, L. & Rajkumar, K. Process Parameters Effect Investigations on Viscosity of Water-ethylene Glycol-based α-alumina Nanofluids: An Ultrasonic Experimental and Statistical Approach. Arab J Sci Eng 46, 11909–11921 (2021). https://doi.org/10.1007/s13369-021-05790-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05790-6

Keywords

Navigation