Skip to main content

Advertisement

Log in

Synthesis, Identification, Antibacterial Activity, ADME/T and 1BNA-Docking Investigations of 8-Quinolinol Analogs Bearing a Benzimidazole Moiety

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Given the pharmacological significance of 8-quinolinols and benzimidazoles, in the present paper, two series of new N-Heterocyclic having 8-quinolinol and benzimidazole moieties within a single molecular framework were prepared and characterized by elemental analysis, IR, and 13C/1H NMR techniques. To evaluate the desired compound as DNA-binder 3a, 3d, 7a, and 7d were docked with 1BNA DNA using AutoDock version 4.2. On the other hand, many proteins that are crystal structure of the BRCT repeat region from the breast cancer-associated protein, BRCA1 (ID: 1JNX), structure of a b-DNA dodecamer (ID: 1BNA), crystal structure of VEGFR kinase (liver cancer) protein (ID: 3WZE), and crystal structure of an allosteric Eya2 phosphatase inhibitor (lung cancer) protein versus (ID: 5ZMA) proteins, were used to compare the biological activities of all molecules using Maestro Molecular modeling platform. Afterward, ADME/T analysis of the molecules was performed. The derivatives of two series and Nitroxoline drugs were assessed for in vitro antibacterial activity against four microorganisms, including, two gram +bacteria such as B. subtilis, S. aureus, and two gram bacteria such as E. ludwigii, E. coli. All derivatives were found to have moderate to good antibacterial potential. Of the 9 derivatives, 7d has significant antibacterial potential with MIC values of below 20 μg/mL comparable to Nitroxoline vs. all bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Levy, S.B.: Antibiotic resistance-the problem intensifies. Adv. Drug Deliv. Rev. 57(10), 1446–1450 (2005)

    Article  Google Scholar 

  2. Spanò, V.; Montalbano, A.; Carbone, A.; Parrino, B.; Diana, P.; Cirrincione, G.; Castagliuolo, I.; Brun, P.; Issinger, O.-G.; Tisi, S.; Primac, I.; Vedaldi, D.; Salvador, A.; Barraja, P.: Synthesis of a new class of pyrrolo[3,4-h]quinazolines with antimitotic activity. Eur. J. Med. Chem. 74, 340–357 (2014)

    Article  Google Scholar 

  3. Dua, R.; Shrivastava, S.; Sonwane, S.K.; Shrivastava, S.K.: Pharmacological significance of synthetic heterocycles scaffold: a review. Adv. Biol. Res. 5, 120–144 (2011)

    Google Scholar 

  4. Barraja, P.; Diana, P.; Montalbano, A.; Carbone, A.; Viola, G.; Basso, G.; Salvador, A.; Vedaldi, D.; Dall’Acqua, F.; Cirrincione, G.: Pyrrolo[3,4-h]quinolinones a new class of photochemotherapeutic agents. Bioorg. Med. Chem. 19, 2326–2341 (2011)

    Article  Google Scholar 

  5. Orjala, J.; Gerwick, W.H.: Two quinoline alkaloids from the Caribbean cyanobacterium Lyngbya majuscule. Phytochemistry 45(5), 1087–1090 (1997)

    Article  Google Scholar 

  6. Segawa, J.; Kitano, M.; Kazuno, K.; Matsuoka, M.; Shirahase, I.; Ozaki, M.; Matsuda, M.; Tomii, Y.; Kise, M.: Studies on pyridonecarboxylic acids. 1. Synthesis and antibacterial evaluation of 7-substituted-6-halo-4-oxo-4H-[1, 3] thiazeto [3, 2-a] quinoline-3-carboxylic acids. J. Med. Chem. 35(25), 4727–4738 (1999)

    Article  Google Scholar 

  7. Pomel, S.; Biot, C.; Bories, C.; Loiseau, P.M.: Antiprotozoal activity of ferroquine. Parasitol. Res. 112(2), 665–669 (2013)

    Article  Google Scholar 

  8. Vangapandu, S.; Jain, M.; Jain, R.; Kaur, S.; Singh, P.P.: Ring-substituted quinolines as potential anti-tuberculosis agents. Bioorg. Med. Chem. 12(10), 2501–2508 (2004)

    Article  Google Scholar 

  9. Muregi, F.W.; Chhabra, S.C.; Njagi, E.N.M.; Lang’at-Thoruwa, C.C.; Njue, W.M.; Orago, A.S.S.; Omar, S.A.; Ndiege, I.O.: In vitro antiplasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiation effects. J. Ethnopharmacol. 84(2–3), 235–239 (2003)

    Article  Google Scholar 

  10. Mahmoud, M.E.; Mohamed, A.K.: Efficient removal of La (III) from water by surface metal sequestration methodology using 5-azo-phenolate-8-hydroxyquinoline as a task designed sequestering material. J. Ind. Eng. Chem. 63, 220–229 (2018)

    Article  Google Scholar 

  11. Singh, D.; Nishal, V.; Bhagwan, S.; Saini, R.K.; Singh, I.: Electroluminescent materials: metal complexes of 8-hydroxyquinoline-A review. Mater. Des. 156, 215–228 (2018)

    Article  Google Scholar 

  12. Yang, Y.; Huang, F.; Huber, T.; Su, X.C.: Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis. J. Biomol. NMR 64(2), 103–113 (2016)

    Article  Google Scholar 

  13. Cherdtrakulkiat, R.; Boonpangrak, S.; Sinthupoom, N.; Prachayasittikul, S.; Ruchirawatd, S.; Prachayasittikul, V.: Derivatives (halogen, nitro and amino) of 8-hydroxyquinoline with highly potent antimicrobial and antioxidant activities. Biochem. Biophys. Rep. 6, 135–141 (2016)

    Google Scholar 

  14. Vashi, R.T.; Patel, S.B.: Synthesis, characterization and antifungal activity of novel quinazolin-4-one derivatives containing 8-hydroxyquinazoline ligand and its various metal complexes. J. Chem. 6(S1), S445–S451 (2009)

    Google Scholar 

  15. Jampilek, J.; Kralova, K.; Pesko, M.; Kos, J.: Ring-substituted 8-hydroxyquinoline-2-carboxanilides as photosystem II inhibitors. Bioorg. Med. Chem. Lett. 26(16), 3862–3865 (2016)

    Article  Google Scholar 

  16. Sashidhara, K.V.; Kumar, A.; Bhatia, G.; Khan, M.M.; Khanna, A.K.; Saxena, J.K.: Antidyslipidemic and antioxidative activities of 8-hydroxyquinoline derived novel keto-enamine Schiffs bases. Eur. J. Med. Chem. 44(4), 1813–1818 (2009)

    Article  Google Scholar 

  17. Jiang, H.; Taggart, J.E.; Zhang, X.; Benbrook, D.M.; Lind, S.E.; Ding, W.Q.: Nitroxoline (8-hydroxy-5-nitroquinoline) is more a potent anti-cancer agent than clioquinol (5-chloro-7-iodo-8-quinoline). Cancer Lett. 312(1), 11–17 (2011)

    Article  Google Scholar 

  18. Polanski, J.; Niedbala, H.; Musiol, R.; Podeszwa, B.; Tabak, D.; Palka, A.; Mencel, A.; Finster, J.-F.; Mouscadet, M.L.B.: 5-Hydroxy-6-quinaldic acid as a novel molecular scaffold for HIV-1 integrase inhibitors. Lett. Drug Des. Discov. 3, 175–178 (2006)

    Article  Google Scholar 

  19. Gaba, M.; Singh, S.; Mohan, C.: Benzimidazole: an emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem. 76, 494–505 (2014)

    Article  Google Scholar 

  20. Longo, M.; Zanoncelli, S.; Messina, M.; Scandale, I.; Mackenzie, C.; Geary, T.; Marsh, K.; Lindley, D.; Mazué, G.: In vivo preliminary investigations of the effects of the benzimidazole anthelmintic drug flubendazole on rat embryos and fetuses. Reprod. Toxicol. 49, 33–42 (2014)

    Article  Google Scholar 

  21. Refaat, H.M.: Synthesis and anticancer activity of some novel 2-substituted benzimidazole derivatives. Eur. J. Med. Chem. 45(7), 2949–2956 (2010)

    Article  Google Scholar 

  22. Song, D.; Ma, S.: Recent development of benzimidazole-containing antibacterial agents. Chem. Med. Chem. 11(7), 646–659 (2016)

    Article  Google Scholar 

  23. Toro, P.; Klahn, A.H.; Pradines, B.; Lahoz, F.; Pascual, A.; Biot, C.; Arancibia, R.: Organometallic benzimidazoles: synthesis, characterization and antimalarial activity. Inorg. Chem. Commun. 35, 126–129 (2013)

    Article  Google Scholar 

  24. Enquist, P.A.; Gylfe, Å.; Hägglund, U.; Lindström, P.; Norberg-Scherman, H.; Sundin, C.; Elofsson, M.: Derivatives of 8-hydroxyquinoline-antibacterial agents that target intra-and extracellular Gram-negative pathogens. Bioorg. Med. Chem. Lett. 22(10), 3550–3553 (2012)

    Article  Google Scholar 

  25. de Luiza, B.O.; Borgati, T.F.; de Freitas, R.P.; Ruiz, A.L.; Marchetti, G.M.; de Carvalho, J.E.; da Cunha, E.F.F.; Ramalho, T.C.; Alves, R.B.: Synthesis and antiproliferative activity of 8-hydroxyquinoline derivatives containing a 1, 2, 3-triazole moiety. Eur. J. Med. Chem. 84, 595–604 (2014)

    Article  Google Scholar 

  26. El Faydy, M.; Djassinra, T.; Haida, S.; Rbaa, M.; Ounine, K.; Kribii, A.; Lakhrissi, B.: Synthesis and investigation of antibacterial and antioxidants properties of some new 5-subsituted-8-hydroxyquinoline derivatives. J. Mater. Environ. Sci. 8(11), 3855–3863 (2017)

    Google Scholar 

  27. Huseynova, A.; Kaya, R.; Taslimi, P.; Farzaliyev, V.; Mammadyarova, X.; Sujayev, A.; Tüzün, B.; Kocyigit, U.M.; Alwasel, S.; Gulçin, İ.: Design, synthesis, characterization, biological evaluation, and molecular docking studies of novel 1, 2-aminopropanthiols substituted derivatives as selective carbonic anhydrase, acetylcholinesterase and α-glycosidase enzymes inhibitors. J. Biomol. Struct. Dyn. 1–13 (2020)

  28. Demir, Y.; Taslimi, P., Koçyiğit, Ü.M.; Akkuş, M., Özaslan, M.S.; Duran, H.E.; Budak, Y.; Tüzün, B.; Gürdere, M.B.; Ceylan, M.; Taysi, S.: Determination of the inhibition profiles of pyrazolyl–thiazole derivatives against aldose reductase and α‐glycosidase and molecular docking studies. Arch. Pharm. e2000118 (2020)

  29. Türkan, F.; Taslimi, P.; Abdalrazaq, S.M.; Aras, A.; Erden, Y.; Celebioglu, H.U.; Tuzun, B.; Ağırtaş, M.S.; Gülçin, İ.: Determination of anticancer properties and inhibitory effects of some metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, alpha glycosidase of some compounds with molecular docking study. J. Biomol. Struct. Dyn. 1–17 (2020)

  30. El Faydy, M.; Lakhrissi, B.; Jama, C.; Zarrouk, A.; Olasunkanmid, L.O.; Ebenso, E.E.; Bentiss, F.: Electrochemical, surface and computational studies on the inhibition performance of some newly synthesized 8-hydroxyquinoline derivatives containing benzimidazole moiety against the corrosion of carbon steel in phosphoric acid environment. J. Mater. Sci. Technol. 9(1), 727–748 (2020)

    Google Scholar 

  31. Oluwaseun, A.: In vitro susceptibility of some uropathogens and a comparative assessment of antibacterial activities of local and imported multodiscs. Afr. J. Microbiol. Res. 3(6), 101–107 (2011)

    Google Scholar 

  32. Morris, M.; Goodsell, G.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.; Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)

    Article  Google Scholar 

  33. Taylor, P.C.; Schoenknecht, F.D.; Sherris, J.C.; Linner, E.C.: Determination of minimum bactericidal concentrations of oxacillin for Staphylococcus aureus: influence and significance of technical factors. Antimicrob. Agents Chemother. 23(1), 142–150 (1983)

    Article  Google Scholar 

  34. Trott, O.; Olson, A.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comp. Chem. 31, 455–461 (2010)

    Google Scholar 

  35. Schrödinger Release 2019-4: LigPrep, Schrödinger, LLC, New York, NY, 2019

  36. Williams, R.S.; Green, R.; Glover, J.M.: Crystal structure of the BRCT repeat region from the breast cancer-associated protein BRCA1. Nat. Struct. Biol. 8(10), 838–842 (2001)

    Article  Google Scholar 

  37. Drew, H.R.; Wing, R.M.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R.E.: Structure of a B-DNA dodecamer: conformation and dynamics. Proc. Natl. Acad. Sci. 78(4), 2179–2183 (1981)

    Article  Google Scholar 

  38. Okamoto, K.; Ikemori-Kawada, M.; Jestel, A.; von König, K.; Funahashi, Y.; Matsushima, T.; Tsuruoka, A.; Inoue, A.; Matsui, J.: Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS Med. Chem. Lett. 6(1), 89–94 (2015)

    Article  Google Scholar 

  39. Anantharajan, J.; Zhou, H.; Zhang, L.; Hotz, T.; Vincent, M.Y.; Blevins, M.A.; Jansson, A.E.; Kuan, J.W.L.; Ng, E.Y.; Yeo, Y.K.; Baburajendran, N.: Structural and functional analyses of an allosteric EYA2 phosphatase inhibitor that has on-target effects in human lung cancer cells. Mol. Cancer Ther. 18(9), 1484–1496 (2019)

    Article  Google Scholar 

  40. Frisch, M.J.; Trucks, G.W.; Schlegel, H.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A. Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.: Gaussian 09, Revision D.01. Gaussian Inc., Wallingford, CT, (2009)

  41. Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T.: Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J. Med. Chem. 49, 6177–6196 (2006)

    Article  Google Scholar 

  42. Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W.: Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27(3), 221–234 (2013)

    Article  Google Scholar 

  43. Schrödinger Release 2019–4: LigPrep, Schrödinger, LLC, New York, NY, (2019)

  44. Du, Q.; Qian, Y.; Yao, X.; Xue, W.: Elucidating the tight-binding mechanism of two oral anticoagulants to factor Xa by using induced-fit docking and molecular dynamics simulation. J. Biomol. Struct. Dyn. 38(2), 625–633 (2020)

    Article  Google Scholar 

  45. Acar Çevik, U.; Kaya Çavuşoğlu, B.; Sağlık, B.N.; Osmaniye, D.; Levent, S.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A.: Synthesis, docking studies and biological activity of new benzimidazole-triazolothiadiazine derivatives as aromatase inhibitor. Molecules 25(7), 1642 (2020)

    Article  Google Scholar 

  46. Schrödinger Release 2020–1: QikProp, Schrödinger, LLC, New York, NY, (2020)

  47. Huang, H.; Zhong, C.; Zhou, Y.: Synthesis and luminescent properties of polymeric metal complexes containing bis (8-hydroxyquinoline) group. Eur. Polym. J. 44(9), 2944–2950 (2008)

    Article  Google Scholar 

  48. El Faydy, M.; Galai, M.; El Assyry, A.; Tazouti, A.; Touir, R.; Lakhrissi, B.; Touhami, M.E.; Zarrouk, A.: Experimental investigation on the corrosion inhibition of carbon steel by 5-(chloromethyl)-8-quinolinol hydrochloride in hydrochloric acid solution. J. Mol. Liq. 219, 396–404 (2016)

    Article  Google Scholar 

  49. Mentese, E.; Yılmaz, F.; Emirik, M.; Ülker, S.; Kahveci, B.: Synthesis, molecular docking and biological evaluation of some benzimidazole derivatives as potent pancreatic lipase inhibitors. Bioorg. Chem. 76, 478–486 (2018)

    Article  Google Scholar 

  50. Aktaş, A.; Tüzün, B.; Aslan, R.; Sayin, K.; Ataseven, H.: New anti-viral drugs for the treatment of COVID-19 instead of favipiravir. J. Biomol. Struct. Dyn. 1–11 (2020)

  51. Aktaş, A.; Tüzün, B.; Taşkın Kafa, H.A.; Sayin, K.; Ataseven, H.: Clarification of interaction mechanism of arbidol with covid-19 and investigation of the inhibition activity analogues against covid-19. Bratislava Med. J. 121(10) (2020).

  52. Sayin, K.; Karakaş, D.: Determination of structural, spectral, electronic and biological properties of tosufloxacin boron complexes and investigation of substituent effect. J. Mol. Struct. 1146, 191–197 (2017)

    Article  Google Scholar 

  53. Sayin, K.; Karakaş, D.: Investigation of structural, electronic properties and docking calculations of some boron complexes with norfloxacin: a computational research. Spectrochim. Acta Part A 202, 276–283 (2018)

    Article  Google Scholar 

  54. Sayin, K.; Karakaş, D.: Quantum chemical investigation of levofloxacin-boron complexes: a computational approach. J. Mol. Struct. 1158, 57–65 (2018)

    Article  Google Scholar 

  55. Sayin, K.; Üngördü, A.: Investigation of anticancer properties of caffeinated complexes via computational chemistry methods. Spectrochim. Acta Part A 193, 147–155 (2018)

    Article  Google Scholar 

  56. Sayin, K.; Üngördü, A.: Investigations of structural, spectral and electronic properties of enrofloxacin and boron complexes via quantum chemical calculation and molecular docking. Spectrochim. Acta Part A 220, 117102 (2019)

    Article  Google Scholar 

  57. Üngördü, A.; Sayin, K.: Quantum chemical calculations on sparfloxacin and boron complexes. Chem. Phys. Lett. 733, 136677 (2019)

    Article  Google Scholar 

  58. Jayarajan, R.; Satheeshkumar, R.; Kottha, T.; Subbaramanian, S.; Sayin, K.; Vasuki, G.: Water mediated synthesis of 6-amino-5-cyano-2-oxo-N-(pyridin-2-yl)-4-(p-tolyl)-2H-[1,2’-bipyridine]-3-carboxamide and 6-amino-5-cyano-4-(4-fluorophenyl)-2-oxo-N-(pyridin-2-yl)-2H-[1,2’-bipyridine]-3-carboxamide - an experimental and computational studies with non-linear optical (NLO) and molecular docking analyses. Spectrochim. Acta Part A 229, 117861 (2020)

    Article  Google Scholar 

  59. Lipinski, C.A.: Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 1(4), 337–341 (2004)

    Article  Google Scholar 

  60. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997)

    Article  Google Scholar 

  61. Jorgensen, W.J.; Duffy, E.M.: Prediction of drug solubility from structure. Adv. Drug Deliv. Rev. 54(3), 355–366 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. El Faydy or A. Zarrouk.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Faydy, M., Dahaieh, N., Ounine, K. et al. Synthesis, Identification, Antibacterial Activity, ADME/T and 1BNA-Docking Investigations of 8-Quinolinol Analogs Bearing a Benzimidazole Moiety. Arab J Sci Eng 47, 497–510 (2022). https://doi.org/10.1007/s13369-021-05749-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05749-7

Keywords

Navigation