Skip to main content
Log in

Optimization of Biocatalytic Production of Enantiopure (S)-1-(4-Methoxyphenyl) Ethanol with Lactobacillus senmaizuke Using the Box–Behnken Design-Based Model

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Enantiomerically pure (S)-1-(4-methoxyphenyl) ethanol is a significant molecule for the production of various drug intermediates. (S)-1-(4-methoxyphenyl) ethanol was synthesized from 4-methoxyacetophenone using Lactobacillus senmaizuke as a biocatalyst. In addition, optimization of experimental conditions is important to analyze the role of culture parameters for catalytic bioreduction reactions. For this particular purpose, the experimental conditions of pH, incubation period, temperature, and agitation speed were investigated with the Box–Behnken experimental design-based proposed optimization model. (S)-1-(4-methoxyphenyl) ethanol, which can be used for the synthesis of antihistamines, including diphenhydramine hydrochloride and loratadine cycloalkyl [b] indoles that have the treatment function for an allergic response, was obtained in > 99% conversion, > 99% enantiomeric excess and 96% yield with whole cells of L. senmaizukei at this optimization conditions: pH = 5.80, the temperature = 29 °C, incubation period = 50 h, and agitation speed = 155 rpm. The bioreduction of 4-methoxyacetophenone efficiency was importantly affected by the quadratic and linear effects of experimental design parameters. Besides, the results demonstrate the importance of design parameters for catalytic bioreduction reactions. It is also concluded that the results show the effectiveness of the Box–Behnken experimental design-based proposed model to obtain optimum operating conditions of design parameters for catalytic bioreduction reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gandomkar, S.; Habibi, Z.; Mohammadi, M.; Yousefi, M.; Salimi, S.: Enantioselective resolution of racemic ibuprofen esters using different lipases immobilized on epoxy-functionalized silica. Biocatal. Agric. Biotechnol. 4, 550–554 (2015). https://doi.org/10.1016/j.bcab.2015.10.007

    Article  Google Scholar 

  2. Devendran, S.; Yadav, G.D.: Lipase-catalyzed kinetic resolution of (±)-1-(2-Furyl) ethanol in nonaqueous media. Chirality 26, 286–292 (2014). https://doi.org/10.1002/chir.22317

    Article  Google Scholar 

  3. Baydaş, Y.; Dertli, E.; Şahin, E.: Green synthesis of chiral aromatic alcohols with Lactobacillus kefiri P2 as a novel biocatalyst. Synth. Commun. 50, 1035–1045 (2020). https://doi.org/10.1080/00397911.2020.1729809

    Article  Google Scholar 

  4. Hollmann, F.; Arends, I.W.C.E.; Holtmann, D.: Enzymatic reductions for the chemist. Green Chem. 13, 2285–2314 (2011). https://doi.org/10.1039/C1GC15424A

    Article  Google Scholar 

  5. Corey, E.J.; Shibata, S.; Bakshi, R.K.: An efficient and catalytically enantioselective route to (S)-(-)-phenyloxirane. J. Org. Chem. 53, 2861–2863 (1998)

    Article  Google Scholar 

  6. Touchard, F.; Bernard, M.; Fache, F.; Lemaire, M.: Ureas and thioureas as rh-ligands for the enantioselective hydride transfer reduction of acetophenone. J. Mol. Catal. A Chem. 140, 1–11 (1999). https://doi.org/10.1016/S1381-1169(98)00212-X

    Article  Google Scholar 

  7. Cordes, D.B.; Kwong, T.J.; Morgan, K.A.; Singaram, B.: Chiral styrene oxides from α-haloacetophenones using NaBH4 and TarB-NO2, a chiral Lewis acid. Tetrahedron Lett. 47, 349–351 (2006). https://doi.org/10.1016/j.tetlet.2005.11.011

    Article  Google Scholar 

  8. Mikhailine, A.A.; Morris, R.H.: Effect of the structure of the diamine backbone of p−n−n−p ligands in iron(ii) complexes on catalytic activity in the transfer hydrogenation of acetophenone. Inorg. Chem. 49, 11039–11044 (2010). https://doi.org/10.1021/ic101548j

    Article  Google Scholar 

  9. Pakulski, M.M.; Mahato, S.K.; Bosiak, M.J.; Krzeminski, M.P.; Zaidlewicz, M.: Enantioselective reduction of ketoxime ethers with borane–oxazaborolidines and synthesis of the key intermediate leading to (S)-rivastigmine. Tetrahedron Asymmetry 23, 716–721 (2012). https://doi.org/10.1016/j.tetasy.2012.05.008

    Article  Google Scholar 

  10. Yadav, G.D.; Devendran, S.: Lipase catalyzed synthesis of cinnamyl acetate via transesterification in non-aqueous medium. Process Biochem. 47, 496–502 (2012). https://doi.org/10.1016/j.procbio.2011.12.008

    Article  Google Scholar 

  11. He, P.; Zheng, H.; Liu, X.; Lian, X.; Lin, L.; Feng, X.: Asymmetric reduction of α-amino ketones with a KBH4 solution catalyzed by chiral lewis acids. Chem. A Eur. J. 20, 13482–13486 (2014). https://doi.org/10.1002/chem.201404732

    Article  Google Scholar 

  12. Ni, Y.; Xu, J.H.: Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols. Biotechnol. Adv. 30, 1279–1288 (2012). https://doi.org/10.1016/j.biotechadv.2011.10.007

    Article  Google Scholar 

  13. Solano, D.M.; Hoyos, P.; Hernáiz, M.J.; Alcántara, A.R.; Sánchez-Montero, J.M.: Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. Bioresour. Technol. 115, 196–207 (2012). https://doi.org/10.1016/j.biortech.2011.11.131

    Article  Google Scholar 

  14. Verho, O.; Bäckvall, J.E.: Chemoenzymatic dynamic kinetic resolution: a powerful tool for the preparation of enantiomerically pure alcohols and amines. J. Am. Chem. Soc. 137, 3996–4009 (2015). https://doi.org/10.1021/jacs.5b01031

    Article  Google Scholar 

  15. Engleder, M.; Pichler, H.: On the current role of hydratases in biocatalysis. Appl. Microbiol. Biotechnol. 102, 5841–5858 (2018). https://doi.org/10.1007/s00253-018-9065-7

    Article  Google Scholar 

  16. Qin, F.; Qin, B.; Mori, T.; Wang, Y.; Meng, L.; Zhang, X.; You, S.: Engineering of Candida glabrata ketoreductase 1 for asymmetric reduction of α-halo ketones. ACS Catal. 6, 6135–6140 (2016). https://doi.org/10.1021/acscatal.6b01552

    Article  Google Scholar 

  17. de Miranda, A.S.; Simon, R.C.; Grischek, B.; de Paula, G.C.; Horta, B.A.; de Miranda, L.S.; de Souza, R.O.: Chiral chlorohydrins from the biocatalyzed reduction of chloroketones: chiral building blocks for antiretroviral drugs. Chem. Cat. Chem. 7, 984–992 (2015). https://doi.org/10.1002/cctc.201403023

    Article  Google Scholar 

  18. Chakraborty, A.A.; Phadke, R.P.; Chaudhary, F.A.; Shete, P.S.; Rao, B.S.; Jasani, K.D.: Optimization of redox reactions employing whole cell biocatalysis. World J. Microb. Biotehnol. 21, 221–227 (2005). https://doi.org/10.1007/s11274-004-3620-3

    Article  Google Scholar 

  19. De Carvalho, C.C.: Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol. Adv. 29, 75–83 (2011). https://doi.org/10.1016/j.biotechadv.2010.09.001

    Article  Google Scholar 

  20. Li, J.; Wang, P.; He, J.Y.; Huang, J.; Tang, J.: Efficient biocatalytic synthesis of (R)-[3,5-Bis(Trifluoromethyl)Phenyl] ethanol by a newly isolated Trichoderma Asperellum ZJPH0810 using dual cosubstrate: ethanol and glycerol. Appl. Microbiol. Biotechnol. 97, 6685–6692 (2013). https://doi.org/10.1007/s00253-013-4973-z

    Article  Google Scholar 

  21. Garzón-Posse, F.; Becerra-Figueroa, L.; Hernández-Arias, J.; Gamba-Sánchez, D.: Whole cells as biocatalysts in organic transformations. Molecules 23, 1265 (2018). https://doi.org/10.3390/molecules23061265

    Article  Google Scholar 

  22. Yu, S.; Li, H.; Lu, Y.; Zheng, G.A.: Catalyst from burkholderia cenocepacia for efficient anti-prelog’s bioreduction of 3,5-Bis(Trifluoromethyl) acetophenone. Appl. Biochem. Biotechnol. 184, 1319–1331 (2018). https://doi.org/10.1007/s12010-017-2628-8

    Article  Google Scholar 

  23. Hillier, M.C.; Desrosiers, J.N.; Marcoux, J.F.; Grabowski, E.J.J.: Stereoselective carbon-carbon bond formation via the mitsunobu displacement of chiral secondary benzylic alcohols. Org. Lett. 6, 573–576 (2004). https://doi.org/10.1021/ol036380l

    Article  Google Scholar 

  24. Hillier, M.C.; Marcoux, J.F.; Zhao, D.L.; Grabowski, E.J.J.; McKeown, A.E.; Tillyer, R.D.: Stereoselective formation of carbon–carbon bonds via S(N)2-displacement: synthesis of substituted cycloalkyl b indoles. J. Org. Chem. 70, 8385–8394 (2005). https://doi.org/10.1021/jo051146p

    Article  Google Scholar 

  25. Seayad, A.; Jayasree, S.; Chaudhari, R.V.: Highly efficient catalyst system for the synthesis of 2-arylpropionic acids by carbonylation. Catal. Lett. 61, 99–103 (1999). https://doi.org/10.1023/A:1019064603994

    Article  Google Scholar 

  26. Senboku, H.; Yoneda, K.; Hara, S.: Electrochemical direct carboxylation of benzyl alcohols having an electron-withdrawing group on the phenyl ring: one-step formation of phenylacetic acids from benzyl alcohols under mild conditions. Tetrahedron Lett. 56, 6772–6776 (2015). https://doi.org/10.1016/j.tetlet.2015.10.068

    Article  Google Scholar 

  27. Nakamura, K.; Inoue, Y.; Matsuda, T.; Ohno, A.: Microbial deracemization of 1-arylethanol. Tetrahedron Lett. 36, 6263–6266 (1995). https://doi.org/10.1016/0040-4039(95)01255-G

    Article  Google Scholar 

  28. Wang, W.; Zong, M.H.; Lou, W.Y.: Use of an ionic liquid to improve asymmetric reduction of 4′-methoxyacetophenone catalyzed by immobilized Rhodotorula sp. AS2.2241 cells. J. Mol. Catal. B Enzym. 56, 70–76 (2009). https://doi.org/10.1016/j.molcatb.2008.05.010

    Article  Google Scholar 

  29. Wang, B.; Tang, X.; Liu, J.Y.H.: Escherichia coli BioH: a highly enantioselective and organic solvent tolerant esterase for kinetic resolution of sec-alcohols. Tetrahedron Lett. 5, 6360–6364 (2010). https://doi.org/10.1016/j.tetlet.2010.09.135

    Article  Google Scholar 

  30. Vitale, P.; D’Introno, C.; Perna, F.M.; Perrone, M.G.; Scilimati, A.: Kluyveromyces marxianus CBS 6556 growing cells as a new biocatalyst in the asymmetric reduction of substituted acetophenones. Tetrahedron Asymmetry 24, 389–394 (2013). https://doi.org/10.1016/j.tetasy.2013.02.001

    Article  Google Scholar 

  31. Xu, P.; Cheng, J.; Lou, W.Y.; Zong, M.H.: Using deep eutectic solvents to improve the resolution of racemic 1-(4-methoxyphenyl) ethanol through Acetobacter sp. CCTCC M209061 cell-mediated asymmetric oxidation. RSC Adv. 5, 6357–6364 (2015). https://doi.org/10.1039/C4RA12905A

    Article  Google Scholar 

  32. Wei, P.; Liang, J.; Cheng, J.; Zong, M.H.; Lou, W.Y.: Markedly improving asymmetric oxidation of 1-(4-methoxyphenyl) ethanol with Acetobacter sp. CCTCC M209061 cells by adding deep eutectic solvent in a two-phase system. Microb. Cell Fact. 15, 5 (2016). https://doi.org/10.1186/s12934-015-0407-1

    Article  Google Scholar 

  33. Wang, B.; Zhu, B.; Gong, J.; Weng, J.; Xia, F.; Liu, W.: Resolution of racemic1-(4-methoxyphenyl) ethanol using immobilized lipase with high substrate tolerance. Biochem. Eng. J. 158, 107559 (2020). https://doi.org/10.1016/j.bej.2020.107559

    Article  Google Scholar 

  34. Pereira, R.S.: The use of baker’s yeast in the generation of asymmetric centers to produce chiral drugs and other compounds. Crit. Rev. Biotechnol. 18, 25–64 (1998). https://doi.org/10.1080/0738-859891224211

    Article  Google Scholar 

  35. Braiuca, P.; Ebert, C.; Basso, A.; Linda, P.; Gardossi, L.: Computational methods to rationalize experimental strategies in biocatalysis. Trends Biotechnol. 24, 419–425 (2006). https://doi.org/10.1016/j.tibtech.2006.07.001

    Article  Google Scholar 

  36. Çolak, N.S.; Şahin, E.; Dertli, E.; Yilmaz, M.T.; Taylan, O.: Response surface methodology as optimization strategy for asymmetric bioreduction of acetophenone using whole cell of Lactobacillus senmaizukei. Prep. Biochem. Biotechnol. 49, 884–890 (2019). https://doi.org/10.1080/10826068.2019.1633668

    Article  Google Scholar 

  37. Purutoğlu, K.; İspirli, H.; Yüzer, M.O.; Serencam, H.; Dertli, E.: Diversity and functional characteristics of lactic acid bacteria from traditional kefir grains. Int. J. Dairy Technol. 73, 57–66 (2020). https://doi.org/10.1111/1471-0307.12633

    Article  Google Scholar 

  38. Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, p. 1–12. Wiley, Hoboken (2016)

    MATH  Google Scholar 

  39. Özdemir, A.; Cho, B.R.: A nonlinear integer programming approach to solving the robust parameter design optimization problem. Qual. Reliab. Eng. Int. 32, 2859–2870 (2016). https://doi.org/10.1002/qre.1970

    Article  Google Scholar 

  40. Özdemir, A.: D-optimal experimental design for production models in nonstandard experiments. Qual. Reliab. Eng. Int. 36, 1537–1552 (2020). https://doi.org/10.1002/qre.2644

    Article  Google Scholar 

  41. Öksüz, S.; Şahin, E.; Dertli, E.: Synthesis of enantiomerically enriched drug precursors by Lactobacillus paracasei BD 87E6 as a biocatalyst. Chem. Biodivers. 15, e1800028 (2018). https://doi.org/10.1002/cbdv.201800028

    Article  Google Scholar 

  42. Şahin, E.: Production of (R)-1-(1,3-benzodioxol-5-yl)ethanol in high enantiomeric purity by Lactobacillus paracasei BD101. Chirality 30, 189–194 (2018). https://doi.org/10.1002/chir.22782

    Article  Google Scholar 

  43. Nakamura, K.; Yamanaka, R.; Matsuda, T.; Harada, T.: Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymmetry 14, 2659–2681 (2003). https://doi.org/10.1016/S0957-4166(03)00526-3

    Article  Google Scholar 

  44. Mandal, D.; Ahmad, A.; Khan, M.I.; Kumar, R.: Enantioselective bioreduction of acetophenone and its analogous by the fungus Trichothecium sp. J. Mol. Catal. B Enzym. 27, 61–63 (2004). https://doi.org/10.1016/j.molcatb.2003.09.009

    Article  Google Scholar 

  45. Yılmaz, D.; Sahin, E.; Dertli, E.: Highly enantioselective production of chiral secondary alcohols using Lactobacillus paracasei BD 101 as a new whole cell biocatalyst and evaluation of their antimicrobial effects. Chem. Biodivers. 14, e1700269 (2017). https://doi.org/10.1002/cbdv.201700269

    Article  Google Scholar 

  46. Şahin, E.; Dertli, E.: Highly enantioselective production of chiral secondary alcohols with Candida zeylanoides as a new whole cell biocatalyst. Chem. Biodivers. 14, e1700121 (2017). https://doi.org/10.1002/cbdv.201700121

    Article  Google Scholar 

  47. Prelog, V.: Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. Pure Appl. Chem. 9, 119–130 (1964). https://doi.org/10.1351/pac196409010119

    Article  Google Scholar 

Download references

Acknowledgements

The writers are grateful to the Bayburt University Central Research Laboratory for evaluating HPLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Şahin.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1280 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavi, M., Özdemir, A., Dertli, E. et al. Optimization of Biocatalytic Production of Enantiopure (S)-1-(4-Methoxyphenyl) Ethanol with Lactobacillus senmaizuke Using the Box–Behnken Design-Based Model. Arab J Sci Eng 47, 5849–5858 (2022). https://doi.org/10.1007/s13369-021-05769-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05769-3

Keywords

Navigation