Skip to main content
Log in

Compressive Strength of Self-Compacting Concrete Modified with Rice Husk Ash and Calcium Carbide Waste Modeling: A Feasibility of Emerging Emotional Intelligent Model (EANN) Versus Traditional FFNN

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present research, the information on compressive strength of self-compacting concrete (SCC) containing rice husk ash (RHA) and calcium carbide waste (CCW) as an admixture cured for 28 days was provided. The research applied feedforward propagation neural network (FFNN), emotional neural network (EANN), and conventional linear regression (LR) in the prediction of compressive in which FFNN, EANN, and LR models were trained on the experimental data obtained from addition of 0%–10% RHA and 0%–20% CCW in the SCC mixtures. The results revealed that inclusion of CCW reduces the workability of SCC mixtures and increases in compressive strength at 28 days were observed for SCC mixture containing 10% RHA and 0% CCW against the reference mixtures. The results also indicated that all the AI models (FFNN, EANN, and LR) performed very well with R2-values higher than 0.8951 in both the testing and training stages. The results showed that EANN-M3, FFNN-M3, and LR-M3 combination has the highest performance evaluation criteria of R2 = 0.9733 and 0.9610, R2 = 0.9440 and 0.9454 and R2 = 0.9117 and 0.9205 in both training and testing stages, respectively. It indicates the proposed models' high accuracy in predicting the compressive strength σ of self-compacting concrete with rice husk ash as cement replacement and calcium carbide waste as supplementary materials. The result also suggested that other models, like emerging algorithms, hybrid models, and optimization methods, could enhance the models’ performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bouzoubaâ, N.; Lachemi, M.: Self-compacting concrete incorporating high volumes of class F fly ash: Preliminary results. Cem. Concr. Res. 31, 413–420 (2001). https://doi.org/10.1016/S0008-8846(00)00504-4

    Article  Google Scholar 

  2. Pinar, A.; Desmond, F.I.D.; Uwanuakwa, : Intelligent prediction of concrete carboration depth using neural networks. Bull. Transilv. Univ. Brasov, Ser. III Math. Inform. Phys. 9, 99–108 (2016)

    MATH  Google Scholar 

  3. Türkel, S.; Kandemir, A.: Fresh and hardened properties of SCC made with different aggregate and mineral admixtures. J. Mater. Civ. Eng. 22, 1025–1032 (2010)

    Article  Google Scholar 

  4. Loukili, A.: Self-compacting concrete. John Wiley & Sons, Hoboken (2013)

    Google Scholar 

  5. Makaratat, N.; Jaturapitakkul, C.; Namarak, C.; Sata, V.: Effects of binder and CaCl2 contents on the strength of calcium carbide residue-fly ash concrete. Cem. Concr. Compos. 33, 436–443 (2010). https://doi.org/10.1016/j.cemconcomp.2010.12.004

    Article  Google Scholar 

  6. Sun, H.; Li, Z.; Bai, J.; Memon, S.A.; Dong, B.; Fang, Y.; Xu, W.; Xing, F.: Properties of chemically combusted calcium carbide residue and its influence on cement properties. Mater. 8, 638–651 (2015). https://doi.org/10.3390/ma8020638

    Article  Google Scholar 

  7. Rattanashotinunt, C.; Thairit, P.; Tangchirapat, W.; Jaturapitakkul, C.: Use of calcium carbide residue and bagasse ash mixtures as a new cementitious material in concrete. Mater. Des. 46, 106–111 (2013)

    Article  Google Scholar 

  8. Hanjitsuwan, S.; Phoo-ngernkham, T.; Li, L.; Damrongwiriyanupap, N.; Chindaprasirt, P.: Strength development and durability of alkali-activated fly ash mortar with calcium carbide residue as additive. Constr. Build. Mater. 162, 714–723 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.034

    Article  Google Scholar 

  9. Phoo-ngernkham, T.; Phiangphimai, C.; Intarabut, D.; Hanjitsuwan, N.; Damrongwiriyanupap, N.; Li, L.; Chindaprasirt, P.: Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue. Constr. Build. Mater. 247, 118543 (2020)

    Article  Google Scholar 

  10. Nshimiyimana, P.; Messan, A.; Zhao, Z.; Courard, L.: Chemico-microstructural changes in earthen building materials containing calcium carbide residue and rice husk ash. Constr. Build. Mater. 216, 622–631 (2019)

    Article  Google Scholar 

  11. Zareei, S.A.; Ameri, F.; Dorostkar, F.; Ahmadi, M.: Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: evaluating durability and mechanical properties. Case Stud. Constr. Mater. 7, 73–81 (2017). https://doi.org/10.1016/j.cscm.2017.05.001

    Article  Google Scholar 

  12. Meddah, M.S.; Praveenkumar, T.R.; Vijayalakshmi, M.M.; Manigandan, S.; Arunachalam, R.: Mechanical and microstructural characterization of rice husk ash and Al2O3 nanoparticles modified cement concrete. Constr. Build. Mater. 255, 119358 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119358

    Article  Google Scholar 

  13. Marvila, M.T.; de Azevedo, A.R.G.; Alexandre, J.; Colorado, H.; Pereira Antunes, M.L.; Vieira, C.M.F.: Circular economy in cementitious ceramics: replacement of hydrated lime with a stoichiometric balanced combination of clay and marble waste. Int. J. Appl. Ceram. Technol. 18, 192–202 (2021)

    Article  Google Scholar 

  14. Marvila, M.T.; Alexandre, J.; de Azevedo, A.R.G.; Zanelato, E.B.: Evaluation of the use of marble waste in hydrated lime cement mortar based. J. Mater. Cycles Waste Manag. 21, 1250–1261 (2019)

    Article  Google Scholar 

  15. Zhenyan, L.; Hamid, S.; Zainah, I.; Mahdi, S.; Zamin, J.; Karzan, W.; Thai, P.B.; Tonnizam, M.E.; Majid, K.: Computational and experimental analysis of beam to column joints reinforced with CFRP plates. Steel Compos. Struct. 30, 271–280 (2019). https://doi.org/10.12989/SCS.2019.30.3.271

    Article  Google Scholar 

  16. Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Bahadori, A.; Zandi, A.; Salih, M.N.; Nguyen, H.; Dou, J.; Song, X.; Poi-Ngian, S.: Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete. Appl. Sci. 24, 554 (2019). https://doi.org/10.3390/app9245534

    Article  Google Scholar 

  17. Asteris, P.G.; Mokos, V.G.: Concrete compressive strength using artificial neural networks. Neural Comput. Appl. 32, 11807–11826 (2020)

    Article  Google Scholar 

  18. Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Shariati, A.; Toghroli, A.; Trung, N.T.; Salih, M.N.A.: A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques. Eng. Comput. (2020). https://doi.org/10.1007/s00366-019-00930-x

    Article  Google Scholar 

  19. Yazdani, M.; Kabirifar, K.; Frimpong, B.E.; Shariati, M.; Mirmozaffari, M.; Boskabadi, A.: Improving construction and demolition waste collection service in an urban area using a simheuristic approach: a case study in Sydney, Australia. J. Clean. Prod. 280, 124138 (2021). https://doi.org/10.1016/j.jclepro.2020.124138

    Article  Google Scholar 

  20. Bingöl, A.F.; Tortum, A.; Gül, R.: Neural networks analysis of compressive strength of lightweight concrete after high temperatures. Mater. Des. 52, 258–264 (2013)

    Article  Google Scholar 

  21. Ramana, K.V.S.; Anita, T.; Mandal, S.; Kaliappan, S.; Shaikh, H.; Sivaprasad, P.V.; Dayal, R.K.; Khatak, H.S.: Effect of different environmental parameters on pitting behavior of AISI type 316L stainless steel: experimental studies and neural network modeling. Mater. Des. 30, 3770–3775 (2009)

    Article  Google Scholar 

  22. Słoński, M.: A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks. Comput. Struct. 88, 1248–1253 (2010)

    Article  Google Scholar 

  23. Correia, S.L.; Partala, T.; Loch, F.C.; Segadães, A.M.: Factorial design used to model the compressive strength of mortars containing recycled rubber. Compos. Struct. 92, 2047–2051 (2010)

    Article  Google Scholar 

  24. Deshpande, N.; Londhe, S.; Kulkarni, S.: Modeling compressive strength of recycled aggregate concrete by artificial neural network, model tree and non-linear regression. Int. J. Sustain. Built Environ. 3, 187–198 (2014)

    Article  Google Scholar 

  25. Alkroosh, I.S.; Sarker, P.K.: Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming. Comput. Concr. 24, 295–302 (2019)

    Google Scholar 

  26. Sadrmomtazi, A.; Sobhani, J.; Mirgozar, A.M.: Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Constr. Build. Mater. 42, 205–216 (2013)

    Article  Google Scholar 

  27. Chopra, P.; Sharma, R.K.; Kumar, M.: Prediction of compressive strength of concrete using artificial neural network and genetic programming. Mater. Sci. Eng. Adv. (2016). https://doi.org/10.1155/2016/7648467

    Article  Google Scholar 

  28. Chang, W.; Zheng, W.: Estimation of compressive strength of stirrup-confined circular columns using artificial neural networks. Struct. Concr. 20, 1328–1339 (2019)

    Article  Google Scholar 

  29. Hammoudi, A.; Moussaceb, K.; Belebchouche, C.; Dahmoune, F.: Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Constr. Build. Mater. 209, 425–436 (2019)

    Article  Google Scholar 

  30. Tuntisukrarom, K.; Cheerarot, R.: Prediction of Compressive Strength Behavior of Ground Bottom Ash Concrete by an Artificial Neural Network. Adv. Mater. Sci. Eng. 2020 (2020). https://doi.org/10.1155/2020/2608231

  31. Nikoo, M.; Moghadam, F.T.; Sadowski, L.: Prediction of concrete compressive strength by evolutionary artificial neural networks. Adv. Mater. Sci. Eng. 2015 (2015). https://doi.org/10.1155/2015/849126

  32. Banu, S.S.; Kartikeyan, J.; Jayabalan, P.: Influence of using agro-waste as a partial replacement in cement on the compressive strength of concrete–A statistical approach. Constr. Build. Mater. 250, 118746 (2020)

    Article  Google Scholar 

  33. Naderpour, H.; Nagai, K.; Fakharian, P.; Haji, M.: Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods. Compos. Struct. 215, 69–84 (2019)

    Article  Google Scholar 

  34. Azimi-Pour, M.; Eskandari-Naddaf, H.: ANN and GEP prediction for simultaneous effect of nano and micro silica on the compressive and flexural strength of cement mortar. Constr. Build. Mater. 189, 978–992 (2018)

    Article  Google Scholar 

  35. Onyari, E.K.; Ikotun, B.D.: Prediction of compressive and flexural strengths of a modified zeolite additive mortar using artificial neural network. Constr. Build. Mater. 187, 1232–1241 (2018)

    Article  Google Scholar 

  36. ASTM C150/C150M-20: Standard specification for portland cement ASTM international west Conshohocken, (2000).

  37. ASTM C188–17: Standard test method for density of hydraulic cement, ASTM international, West Conshohocken, PA, (2017).

  38. ASTM C136/C136M-19: Standard, Standard test method for sieve analysis of fine and coarse aggregates, ASTM international, West Conshohocken, PA, (2019).

  39. ASTM C29/C29M-17: Standard test method for bulk density (“Unit Weight”) and voids in aggregate ASTM international west Conshohocken, PA, (2017).

  40. ASTM C127- 15: Standard test method for relative density (Specific Gravity) and absorption of coarse aggregate, ASTM international west Conshohocken, PA, (2015).

  41. Mirarabi, A.; Nassery, H.R.; Nakhaei, M.; Adamowski, J.; Akbarzadeh, A.H.; Alijani, F.: Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems. Environ. Earth Sci. 78, 1–15 (2019). https://doi.org/10.1007/s12665-019-8474-y

    Article  Google Scholar 

  42. Mehr, A.D.; Kahya, E.; Olyaie, E.: Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique. J. Hydrol. 505, 240–249 (2013). https://doi.org/10.1016/j.jhydrol.2013.10.003

    Article  Google Scholar 

  43. Gaya, M.S.; Abdul Wahab, N.; Sam, Y.M.; Samsudin, S.I.: anfis modelling of carbon and nitrogen removal in domestic wastewater treatment plant. J. Teknol. (2014). https://doi.org/10.11113/jt.v67.2839

    Article  Google Scholar 

  44. Malik, A.; Bhagwat, A.: Modelling groundwater level fluctuations in urban areas using artificial neural network. Groundw. Sustain. Dev. 12, 100484 (2020). https://doi.org/10.1016/j.gsd.2020.100484

    Article  Google Scholar 

  45. Khashman, A.: A modified backpropagation learning algorithm with added emotional coefficients. IEEE Trans. Neural Netw. 19, 1896–1909 (2008). https://doi.org/10.1109/TNN.2008.2002913

    Article  Google Scholar 

  46. Choubin, B.; Khalighi-Sigaroodi, S.; Malekian, A.; Kişi, O.: Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference system for forecasting precipitation based on large-scale climate signals. Hydrol. Sci. J. 61, 1001–1009 (2016). https://doi.org/10.1080/02626667.2014.966721

    Article  Google Scholar 

  47. Bilgili, M.: Prediction of soil temperature using regression and artificial neural network models. Meteorol. Atmos. Phys. 110, 59–70 (2010). https://doi.org/10.1007/s00703-010-0104-x

    Article  Google Scholar 

  48. Yetilmezsoy, K.; Ozkaya, B.; Cakmakci, M.: Artificial intelligence-based prediction models for environmental engineering. Neural Net. World 21, 193–218 (2011)

    Article  Google Scholar 

  49. Ozturk, S.; Enez, K.: Determination of the perceptions of secondary education students towards environment and nature. J. Envrion. Prot. Ecol. 16, 723–732 (2015)

    Google Scholar 

  50. Abrahão, R.; Carvalho, M.; Da Silva, W.R.; Machado, T.T.V.; Gadelha, C.L.M.; Hernandez, M.I.M.: Use of index analysis to evaluate the water quality of a stream receiving industrial effluents. Water SA. 33, 459–465 (2007)

    Google Scholar 

  51. Liu, Y.; Hou, D.; Bao, J.; Qi, Y.: Multi-step ahead time series forecasting for different data patterns based on LSTM recurrent neural network. In: Proc. - 2017 14th Web Inf. Syst. Appl. Conf. WISA 2017. 2018-Janua 305–310 (2018).

  52. Zhang, P.G.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003). https://doi.org/10.1016/S0925-2312(01)00702-0

    Article  MATH  Google Scholar 

  53. Sammen, S.S., Ehteram, M,; Abba, SI,; Abdulkadir, RA,; Ahmed, AN.; El-Shafie, A.: A new soft computing model for daily streamflow forecasting. Stoch. Environ. Res. Risk Assess. (2021). https://doi.org/10.1007/s00477-021-02012-1

Download references

Acknowledgements

The authors acknowledge the Department of Civil Engineering Laboratory, Bayero University Kano-Nigeria, for their support throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Abba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haruna, S.I., Malami, S.I., Adamu, M. et al. Compressive Strength of Self-Compacting Concrete Modified with Rice Husk Ash and Calcium Carbide Waste Modeling: A Feasibility of Emerging Emotional Intelligent Model (EANN) Versus Traditional FFNN. Arab J Sci Eng 46, 11207–11222 (2021). https://doi.org/10.1007/s13369-021-05715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05715-3

Keywords

Navigation