Skip to main content
Log in

Features of Radiothermoluminescence of Polypropylene and Ethylene Propylenediene Elastomer SKEPT-4044 Compositions with Nanoscale Metal-Containing Fillers

  • NEW METHODS OF TREATMENT AND PRODUCTION OF MATERIALS WITH REQUIRED PROPERTIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Using radiothermoluminescence (RTL), the molecular mobility features in the temperature range of 77–300 K were studied for the polypropylene (PP)/ethylene propylene diene elastomer SKEPT-4044 with NiO, Cu2O, and Fe3O4 nanoparticles (NPs) based on ABS-acrylonitrile butadiene or SCS-divinyl styrene matrices. It has been shown that the introduction of nanofillers in PP significantly affects the nature and temperature of γ- and β-relaxation processes, while the region of manifestation of the β process noticeably shifts to the region of low temperatures. Composites with Cu2O NPs have a higher β-transition temperature Tβ than composites with other NPs. It has been found that PP/SKEPT-4044 composites with Cu2O NPs with a dispersion of 11–15 nm and acrylonitrile butadiene thermoplastics have optimal frost resistance compared to other compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Prut, E.V., Nedorezova, P.M., Klyamkina, A.N., et al., Blend polyolefin elastomers based on a stereoblock elastomeric PP, Polym. Sci., Ser. A, 2013, vol. 55, no. 3, pp. 177–185.

    Article  CAS  Google Scholar 

  2. Ryzhikova, I.G., Volkov, A.M., Bauman, N.A., et al., features of modification of binary blends PP/EPDM with the system of organic peroxide—polyfunctional vinil monomer during reactive exstrusion. Part 1. The influence of the molecular-mass characteristics of the EPDM, the chemical nature of the polar vinyl monomer – coagent of peroxide extrusion modification of the polymer blend of PP/EPDM on the impact resistant and the MFI value of resulting products, Plast. Massy, 2013, no. 8, pp. 40–44.

  3. Prorokova, N.P., Vavilova, S.Yu., Buznik, V.M., and Zavadskii, A.E., Modification of polypropylene fibrous materials with ultradispersed polytetrafluoroethylene, Polym. Sci., Ser. A, 2013, vol. 55, no. 11, pp. 643—651.

  4. Buznik, V.M., Fomin, V.M., Okhlopova, A.A., and Alkhimov, A.P., Metallopolimernye nanokompozity (Metal-Polymer Nanocompounds), Novosibirsk: Sib. Branch Russ. Acad. Sci., 2005.

  5. Ali-Zade, R.A., Permittivity of nanocomposites based on magnetite nanoparticles and polymer matrices (collagen and polystyrene), Russ. J. Phys. Chem. A, 2010, vol. 84, no. 9, pp. 1570–1575.

    Article  CAS  Google Scholar 

  6. Magerramov, A.M. and Rustamova, D.F., Dielectric and electret properties of nanocomposites of polyethylene-Fe3O4, crystallized in constant magnetic field, Perspekt. Mater., 2016, no. 3, pp. 27–34.

  7. Kurbanova, N.I., Alimirzoeva, N.A., Kuliev, A.M., et al., Influence of metal-containing nanofillers on properties of mixture and dynamically vulcanized thermoplastic elastomers on the basis of isotactic polypropylene and ternary ethylene propylene diene elastomer, Plast. Massy, 2016, nos. 5–6, pp. 48–51.

  8. Bajpai, O.P., Panja, S., Chattopadhyay, S., and Setua, D.K., Process–structure–property relationships in nanocomposites based on piezoelectric-polymer matrix and magnetic nanoparticles, in Manufacturing of Nanocomposites with Engineering Plastics, Mittal, V., Ed., Cambridge: Elsevier, 2015, ch. 11, pp. 255–278.

    Google Scholar 

  9. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000.

  10. Magerramov, A.M., Mamedova, R.L., Ismailov, I.M., and Bagirbekov, K.V., The dielectric properties of polypropylene/Na+ montmorillonite nanoclays upon heating and cooling, Tech. Phys., 2017, vol. 62, no. 9, pp. 1377–1380. https://doi.org/10.1134/S106378421709016X

    Article  CAS  Google Scholar 

  11. Kuchmenova, D.Kh., Slonov, A.N., Zhansitov, A.A., et al., Investigation of the thermal properties of the polymer-polymeric compositions based on polypropylene, Plast. Massy, 2014, nos. 7–8, pp. 7–9.

  12. Grigoryeva, O.P., Fainleb, A.M., Shumskii, V.F., et al., The effect of multi-reprocessing on the structure and characteristics of thermoplastic elastomers based on recycled polymers, Polym. Sci., Ser. A, 2009, vol. 51, no. 2, pp. 216–225.

    Article  Google Scholar 

  13. Volkov, A.M., Ryzhikova, I.G., Bauman, N.A., et al., Effect of polypropylene fluidity, concentration and Mooney viscosity EPDM on the properties of PP/EPDM obtained under the dispersive effect of talc on the elastomeric phase during melt processing, Plast. Massy, 2016, nos. 7–8, pp. 38–41.

  14. Magerramov, A.M., Strukturnoe i radiatsionnoe modifitsirovanie elektretnykh i p’ezoelektretnykh svoistv poli-mernykh kompozitov (Structural and Radiation Modification of Electret and Piezoelectric Properties of Polymer Composites), Baku: Elm, 2001.

  15. Magerramov, A.M., Nuriev, M.A., Akhmedov, F.I., Rustamova, D.F., and Sadygov, Kh.A., Peculiarities of charged properties of the polypropylene-metallic oxide composites, Fiz. Khim. Obrab. Mater., 2013, no. 1, pp. 57–60.

  16. Magerramov, A.M., Nuriev, M.A., Akhmedov, F.I., and Ismailov, I.M., Radiothermoluminescence of γ-irradiated composites of polypropylene and dispersed oxides, Surf. Eng. Appl. Electrochem., 2009, vol. 45, no. 5, pp. 437–440.

    Article  Google Scholar 

  17. Meshkova, I.N., Ushakova, T.M., Gultseva, N.M., Grinev, V.G., Ladygina, T.A., and Novokshonova, L.A., Modification of polyolefins as a modern strategy to designing polyolefin materials with a new complex of properties, Polym. Sci., Ser. A, 2008, vol. 50, no. 11, pp. 1161–1174.

    Article  Google Scholar 

  18. Yablokov, M.Yu., Kechekyan, A.S., and Gilman, A.B., Electret properties of nanocomposite materials based on polypropylene, Proc. Int. Sci. Tech. Conf. “Fundamental Problems of Radio-Electronic Instrument Engineering” (INTERMATIC-2011) (Moscow, Russia, November 14–17, 2011), Sigov, A.S., Ed., Moscow: Moscow Inst. Radio Eng., Electron. Automat., 2011, part 2, pp. 78–80.

  19. Sadovnichii, D.N., Tyutnev, A.P., Milekhin, Yu.M., and Khatipov, S.A., Radiation-induced conductivity of polymer composites filled by finely divided oxides, High Energy Chem., 2003, vol. 37, pp. 389–394.

    Article  CAS  Google Scholar 

  20. Kuleshov, I.V. and Nikol’skii, V.G., Radiotermolyumi-nestsentsiya polimerov (Radiothermoluminescence of Polymers), Moscow: Khimiya, 1991.

  21. Magerramov, A.M. and Dashdamirov, M.K., Structural aspects of the radiation modification of the dielectric properties of polyolefins, High Energy Chem., 2005, vol. 39, pp. 142–147. https://doi.org/10.1007/s10733-005-0030-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Magerramov, N. I. Kurbanova or M. N. Bayramov.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magerramov, A.M., Kurbanova, N.I., Bayramov, M.N. et al. Features of Radiothermoluminescence of Polypropylene and Ethylene Propylenediene Elastomer SKEPT-4044 Compositions with Nanoscale Metal-Containing Fillers. Inorg. Mater. Appl. Res. 12, 799–803 (2021). https://doi.org/10.1134/S2075113321030254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321030254

Keywords:

Navigation