Skip to main content
Log in

Tungsten Carbide Nanopowder Synthesis under the Influence of Microwave Electromagnetic Radiation on a W–C System Nanocomposite Produced in a Thermal Plasma

  • COMPOSITE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The effect of processing multicomponent nanopowders of the W–C system, obtained by plasma-chemical synthesis, in microwave fields with a frequency of 2.45 and 24 GHz generated using a magnetron and gyrotron, respectively, is studied experimentally. It is established that microwave processing results in the formation of nanosized particles of tungsten carbide WC. The influence of processing time on the phase, disperse, and chemical compositions of nanopowders is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Panov, V.S., Nanostructured sintered WC–Co hard metals (review), Powder Metall. Met. Ceram., 2015, vol. 53, nos. 11–12, pp. 643–654.

  2. Fang, Z.Z., Wang, X., Ryu, T., et al., Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide. A review, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, no. 2, pp. 288–299.

    Article  CAS  Google Scholar 

  3. Kurlov, A.S. and Gusev, A.I., Tungsten Carbides: Structure, Properties and Application in Hardmetals, Springer, 2013.

    Book  Google Scholar 

  4. Kalita, V.I., Komlev, D.I., Yashin, V.B., et al., Cermet plasma coatings on the base of nanosized tungsten carbide, Fiz. Khim. Obrab. Mater., 2011, no. 5, pp. 32–43.

  5. Sokolov, G.N., Zorin, I.V., Artemev, A.A., et al., Structure formation and properties of weld alloys with addition of refractory compound nanoparticles, Inorg. Mater.: Appl. Res., 2015, vol. 6, no. 3, pp. 240–248.

    Article  Google Scholar 

  6. Linnik, A.A., Pankratov, A.S., and Kobernik, N.V., Effect of nanoscale tungsten carbide powders on the structure and properties of weld metal, Izv. Vyssh. Uchebn. Zaved.,, Mashinostr., 2013, no. 6, pp. 66–71.

  7. Nikiforov, A., Petrushina, I., Christensen, E., Alexeev, N.V., Samokhin, A.V., and Bjerrum, N., WC as a nonplatinum hydrogen evolution electrocatalyst for high temperature PEM water electrolysers, Int. J. Hydrogen Energy, 2012, vol. 37, no. 24, pp. 18591–18597.

    Article  CAS  Google Scholar 

  8. Emin, S., Altinkaya, C., Semerci, A., Okuyucu, H., Yildiz, A., and Stefanov, P., Tungsten carbide electrocatalysts prepared from metallic tungsten nanoparticles for efficient hydrogen evolution, Appl. Catal., B, 2018, vol. 236, pp. 147–153.

    Article  CAS  Google Scholar 

  9. Samokhin, A.V., Alekseev, N.V., and Kornev, S.A., Tungsten carbide and vanadium carbide nanopowders synthesis in DC plasma reactor, Plasma Chem. Plasma Process., 2013, vol. 33, no. 3, pp. 605–616.

    Article  CAS  Google Scholar 

  10. Ryu, T., Sohn, H.Y., Hwang, K.S., and Fang, Z.Z., Tungsten carbide nanopowder by plasma-assisted chemical vapor synthesis from WCl6–CH4–H2 mixtures, J. Mater. Sci., 2008, vol. 43, pp. 5185–5192.

    Article  CAS  Google Scholar 

  11. Ryu, T., Sohn, H.Y., Hwang, K.S., and Fang, Z.Z., Plasma synthesis of tungsten carbide nanopowder from ammonium paratungstate, J. Am. Ceram. Soc., 2009, vol. 92, no. 3, pp. 655–660.

    Article  CAS  Google Scholar 

  12. Kitchen, H.J., Vallance, S.R., Kennedy, J.L., et al., Modern microwave methods in solid-state inorganic materials chemistry: From fundamentals to manufacturing, Chem. Rev., 2014, vol. 114, pp. 1170–1206.

    Article  CAS  Google Scholar 

  13. Makino, Y., Characteristics of millimeter-wave heating and smart materials synthesis, ISIJ Int., 2007, vol. 47, no. 4, pp. 539–544.

    Article  CAS  Google Scholar 

  14. Rao, K.J., Vaidhyanathan, B., Ganguli, M., and Ramakrishnan, P.A., Synthesis of inorganic solid using microwaves, Chem. Mater., 1999, vol. 11, no. 4, pp. 882–895.

    Article  CAS  Google Scholar 

  15. Kappe, C.O., Speeding up solid-phase chemistry by microwave irradiation: A tool for high-throughput synthesis, Am. Lab., 2001, vol. 33, pp. 13–19.

    CAS  Google Scholar 

  16. Dabrowska, S., Chudoba, T., Wojnarowicz, J., and Łojkowski, W., Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: A review, Crystals, 2018, vol. 8, pp. 379–405.

    Article  Google Scholar 

  17. Leonelli, C. and Lojkowski, W., Main development directions in the application of microwave irradiation to the synthesis of nanopowders, Chem. Today, 2007, vol. 25, no. 3, pp. 34–38.

    CAS  Google Scholar 

  18. Leonelli, C. and Komarneni, S., Inorganic syntheses assisted by microwave heating, Inorganics, 2015, vol. 3, pp. 388–391.

    Article  Google Scholar 

  19. Imam, M.A., Lewis, D., Bruce, R.W., Fliflet, A.W., and Kurihara, L.K., Processing of advanced materials with a high frequency, millimeter-wave beam source and other microwave systems, Mater. Sci. Forum, 2003, vols. 426–432, pp. 4111–4116.

  20. Essaki, K., Rees, E.J., and Burstein, G.T., Synthesis of nanoparticulate tungsten carbide under microwave irradiation, J. Am. Ceram. Soc., 2009, vol. 93, no. 3, pp. 692–695.

    Article  Google Scholar 

  21. Behnami, A.K., Hoseinpur, A., Sakaki, M., et al., Synthesis of WC powder through microwave heating of WO3–C mixture, Int. J. Miner., Metall. Mater., 2017, vol. 24, pp. 202–207. https://doi.org/10.1007/s12613-017-1396-3

    Article  CAS  Google Scholar 

  22. Nikolaenko, I.V., Kedin, N.A., and Shveikin, G.P., Receiving of ultra-nanodispersed tungsten oxide and carbide powders by microwave treatment, Vestn. Kazan. Tekhnol. Univ., 2010, no. 2, pp. 18–22.

  23. Lu, J.L., Li, Z.H., Jiang, S.P., et al., Nanostructured tungsten carbide/carbon composites synthesized by a microwave heating method as supports of platinum catalysts for methanol oxidation, J. Power Sources, 2012, vol. 202, pp. 56–62.

    Article  CAS  Google Scholar 

  24. Vallance, S.R., Kitchen, H.J., Ritter, C., et al., Probing the microwave interaction mechanisms and reaction pathways in the energy-efficient, ultra-rapid synthesis of tungsten carbide, Green Chem., 2012, vol. 14, pp. 2184–2192.

    Article  CAS  Google Scholar 

  25. Behnami, A.K., Hoseinpur, A., Sakaki, M., et al., Synthesis of WC powder through microwave heating of WO3–C mixture, Int. J. Miner., Metall. Mater., 2017, vol. 24, pp. 202–207. https://doi.org/10.1007/s12613-017-1396-3

    Article  CAS  Google Scholar 

  26. Wu, A.-H., Tang, J.-C., Ye, N., et al., Fabrication and mechanism of WC nano-powders prepared by microwave carbonization, Mater. Sci. Eng. Powder Metall., 2014, vol. 19, no. 6, pp. 862–866.

    Google Scholar 

  27. Vallance, S.R., Kingman, S., and Gregory, D.H., Ultrarapid materials processing: Synthesis of tungsten carbide on subminute timescales, Adv. Mater., 2007, vol. 19, pp. 138–142.

    Article  CAS  Google Scholar 

  28. Bykov, Yu.V., Rybakov, K.I., and Semenov, V.E., High-temperature microwave processing of materials, J. Phys. D: Appl. Phys., 2001, vol. 34, pp. R55–R75.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Program of Fundamental Studies of the Russian Academy of Sciences according to priority directions 14P “Physical Chemistry of Adsorption Phenomena and Actinide Nanoparticles.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Vodopyanov, A. A. Sorokin, S. V. Sintsov, A. V. Samokhin, N. V. Alekseev or M. A. Sinaisky.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodopyanov, A.V., Sorokin, A.A., Sintsov, S.V. et al. Tungsten Carbide Nanopowder Synthesis under the Influence of Microwave Electromagnetic Radiation on a W–C System Nanocomposite Produced in a Thermal Plasma. Inorg. Mater. Appl. Res. 12, 735–739 (2021). https://doi.org/10.1134/S2075113321030382

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321030382

Keywords:

Navigation