Skip to main content
Log in

Structure, Morphology, and Antibacterial Properties of Mesoporous AlOOH–Metal Nanocomposites

  • COMPOSITE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Bimetallic Al–Cu and Al–Ag nanoparticles were synthesized by electric explosion of wires in an argon atmosphere. The mass ratio of aluminum and the second metal (Me = Cu or Ag) was ~ 90 : 10 and was controlled by the diameter of the dispersed metal wires. Mesoporous AlOOH–Me nanocomposite was obtained by simple oxidation of Al–Me precursors with water at a temperature of 60°С. The kinetic regularities of the oxidation of Al–Me nanoparticles in dilute aqueous suspensions were studied. The effect of the second metal on the structure, morphology, and antibacterial activity of nanocomposites against methicillin-resistant Staphylococcus aureus (MRSA) bacteria was studied. It has been shown that the synthesized AlOOH–Me nanocomposites possess high antibacterial activity and are promising and highly efficient antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Camargo, P.H.C., Satyanarayana, K.G., and Wypych, F., Nanocomposites: Synthesis, structure, properties and new application opportunities, Mater. Res., 2009, vol. 12, no. 1, pp. 1–39.

    Article  CAS  Google Scholar 

  2. Zhou, X.Y., Li, C.L., Huo, D.W., Jie, L.I., and Wu, S.Y., Thermal stability and oil absorption of aluminum hydroxide treated by dry modification with different modifiers, Trans. Nonferrous Met. Soc. China, 2008, vol. 18, no. 4, pp. 908–912.

    Article  CAS  Google Scholar 

  3. He, P., Zou, Y., and Hu, Z., Advances in aluminum hydroxide-based adjuvant research and its mechanism, Hum. Vaccines Immunother., 2015, vol. 11, no. 2, pp. 477–488.

    Article  Google Scholar 

  4. Wadhwa, S., Mathur, A., Pendurthi, R., Singhal, U., Khanuja, M., and Roy, S.S., Titania-based porous nanocomposites for potential environmental applications, Bull. Mater. Sci., 2020, vol. 43, no. 1, pp. 1–9.

    Article  Google Scholar 

  5. Mulugeta, E., Zewge, F., Johnson, C.A., and Chandravanshi, B.S., A high-capacity aluminum hydroxide-based adsorbent for water defluoridation, Desalin. Water Treat., 2014, vol. 52, nos. 28–30, pp. 5422–5429.

  6. Shukla, M., Ghosh, S., Dandapat, N., Mandal, A.K., and Balla, V.K., Microwave-assisted brazing of alumina ceramics for electron tube applications, Bull. Mater. Sci., 2016, vol. 39, no. 2, pp. 587–591.

    Article  CAS  Google Scholar 

  7. Krewski, D., Yokel, R.A., Nieboer, E., Borchelt, D., Cohen, J., Harry, J., Kacew, S., Lindsay, J., Mahfouz, A.M., and Rondeau, V., Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide, J. Toxicol. Environ. Health, 2007, vol. 10, no. S1, pp. 1–269.

    Article  CAS  Google Scholar 

  8. Sadiq, I.M., Chowdhury, B., Chandrasekaran, N., and Mukherjee, A., Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles, Nanomed.: Nanotechnol. Biol. Med., 2009, vol. 5, no. 3, pp. 282–286.

    Article  CAS  Google Scholar 

  9. Lozhkomoev, A.S., Lerner, M.I., Tsukanov, A.A., Kazantsev, S.O., Bakina, O.V., and Psakhie, S.G., On the possibility of soft matter nanostructure formation based on mesoporous aluminum hydroxide. Prospects for biomedical applications, Phys. Mesomech., 2017, vol. 20, no. 2, pp. 134–141. https://doi.org/10.1134/S1029959917020035

    Article  Google Scholar 

  10. Lei, C., Pi, M., Zhou, W., Guo, Y., Zhang, F., and Qin, J., Synthesis of hierarchical porous flower-like ZnO–AlOOH structures and their applications in adsorption of Congo Red, Chem. Phys. Lett., 2017, vol. 687, pp. 143–151.

    Article  CAS  Google Scholar 

  11. Zheng, Y., Liu, J., Cheng, B., You, W., Ho, W., and Tang, H., Hierarchical porous Al2O3@ZnO core-shell microfibers with excellent adsorption affinity for Congo red molecule, Appl. Surf. Sci., 2019, vol. 473, pp. 251–260.

    Article  CAS  Google Scholar 

  12. Tendero, C., Lazar, A.M., Samélor, D., Debieu, O., Constantoudis, V., Papavieros, G., Villeneuve, A., and Vahlas, C., Nanocomposite thin film of Ag nanoparticles embedded in amorphous Al2O3 on optical sensors windows: Synthesis, characterization and targeted application towards transparency and anti-biofouling, Surf. Coat. Technol., 2017, vol. 328, pp. 371–377.

    Article  CAS  Google Scholar 

  13. Mikhaylov, V.I., Maslennikova, T.P., Ugolkov, V.L., and Krivoshapkin, P.V., Hydrothermal synthesis, characterization and sorption properties of Al/Fe oxide-oxyhydroxide composite powders, Adv. Powder Technol., 2016, vol. 27, no. 2, pp. 756–764.

    Article  CAS  Google Scholar 

  14. Bakina, O.V., Glazkova, E.A., Svarovskaya, N.V., Rodkevich, N.G., and Lerner, M.I., “Janus”-like Cu–Fe bimetallic nanoparticles with high antibacterial activity, Mater. Lett., 2019, vol. 242, pp. 187–190.

    Article  CAS  Google Scholar 

  15. Pervikov, A.V., Suliz, K.V., and Lerner, M.I., Nanoalloying of clusters of immiscible metals and the formation of bimetallic nanoparticles in the conditions of non-synchronous explosion of two wires, Powder Technol., 2020, vol. 360, pp. 855–862.

    Article  CAS  Google Scholar 

  16. Lozhkomoev, A., Bakina, O., Kazantsev, S., and Gotman, I., Synthesis of antimicrobial AlOOH–Ag composite nanostructures by water oxidation of bimetallic Al–Ag nanoparticles, RSC Adv., 2018, vol. 8, no. 63, pp. 36239–36244.

    Article  Google Scholar 

  17. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (State Diagrams of Double Metallic Systems), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vols. 1–3.

    Google Scholar 

  18. Vedder, W. and Vermilyea, D.A., Aluminum + water reaction, Trans. Faraday Soc., 1969, vol. 65, pp. 561–584.

    Article  CAS  Google Scholar 

  19. Lozhkomoev, A.S., Glazkova, E.A., Bakina, O.V., Lerner, M.I., Gotman, I., Gutmanas, E.Y., Kazantsev, S.O., and Psakhie, S.G., Synthesis of core–shell AlOOH hollow nanospheres by reacting Al nanoparticles with water, Nanotechnology, 2016, vol. 27, no. 20, art. ID 205603.

    Article  CAS  Google Scholar 

  20. Bakina, O.V., Svarovskaya, N.V., Glazkova, E.A., Lozhkomoev, A.S., Khorobraya, E.G., and Lerner, M.I., Flower-shaped AlOOH nanostructures synthesized by the reaction of an AlN/Al composite nanopowder in water, Adv. Powder Technol., 2015, vol. 26, no. 6, pp. 1512–1519.

    Article  CAS  Google Scholar 

  21. Cheng, X., Huang, X., Wang, X., Zhao, B., Chen, A., and Sun, D., Phosphate adsorption from sewage sludge filtrate using zinc–aluminum layered double hydroxides, J. Hazard. Mater., 2009, vol. 169, nos. 1–3, pp. 958–964.

  22. Zhou, J., Yang, S., Yu, J., and Shu, Z., Novel hollow microspheres of hierarchical zinc–aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water, J. Hazard. Mater., 2011, vol. 192, no. 3, pp. 1114–1121.

    Article  CAS  Google Scholar 

  23. Svarovskaya, N.V., Bakina, O.V., Glazkova, E.A., Fomenko, A.N., and Lerner, M.I., Glass and cellulose acetate fibers-supported boehmite nanosheets for bacteria adsorption, Prog. Nat. Sci.: Mater. Int., 2017, vol. 27, no. 2, pp. 268–274.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (project no. 17-79-20382). The AlOOH nanostructures were investigated with the financial support of the state assignment of the Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (project III.23.2.10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Bakina, S. O. Kazantsev, A. V. Pervikov, E. A. Glazkova, N. V. Svarovskaya, A. S. Lozhkomoev or E. G. Khorobraya.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakina, O.V., Kazantsev, S.O., Pervikov, A.V. et al. Structure, Morphology, and Antibacterial Properties of Mesoporous AlOOH–Metal Nanocomposites. Inorg. Mater. Appl. Res. 12, 767–775 (2021). https://doi.org/10.1134/S2075113321030035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321030035

Keywords:

Navigation