Skip to main content
Log in

Review of Treatment Technologies for the Removal of Phenol from Wastewaters

  • WATER TREATMENT AND DEMINERALIZATION TECHNOLOGY
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

Phenol is an important chemical used in many industries as a raw material, such as, pharmaceutical and rubber, oil and petroleum refineries, pulp and paper manufacturing plants, iron and steel, etc. Phenol and its derivatives are one of the largest groups of environmental pollutants owing to their presence in many industrial effluents because of their widespread use. In addition, leakage accidents that occur during the transportation and storage of phenol cause contamination of the water resources with phenol. It is in the list of priority pollutants of US Environmental Protection Agency (EPA) and it has toxic, carcinogenic and mutagenic effects on humans, animals and aquatic organisms. Therefore, wastewaters containing phenol should be treated before discharge due to its high toxicity even at low concentrations. Over the last decade, the treatment of wastewater contaminated with phenol and phenolic compounds has attracted great attention due to their toxicity and low biodegradability properties. Several treatment processes are used to remove and/or recover phenol and phenolic compounds from wastewaters in the literature and all of them have some advantages and drawbacks. In this review, an extensive research has been carried out to investigate the available treatment technologies for the removal/recovery of phenol and phenolic compounds from industrial wastewaters. Studies on phenol removal by distillation, extraction, adsorption, membrane processes, oxidation and biological treatment processes are summarized and discussed in detailed. In addition, operational problems and the latest improvements of these processes are pointed out based on the removal efficiencies. The initial phenol concentration is found to be a critical parameter for the selection of treatment method. For all treatment processes, recent studies are focused on to overcome high operational costs while providing increases in removal efficiency. Among the treatment processes, adsorption is still found to be the most effective process and a list of adsorbents for phenol removal is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Ahmaruzzaman, M., Adsorption of phenolic compounds on low-cost adsorbents: A review, Adv. Colloid Interface Sci., 2008, vol. 143, pp. 48–67.

    Article  CAS  Google Scholar 

  2. Busca, G., Berardinelli, S., Resini, C., and Arrighi, L., Technologies for the removal of phenol from fluid streams: A short review of recent developments, J. Hazard. Mater., 2008, vol. 160, pp. 265–288.

    Article  CAS  Google Scholar 

  3. Jiang, B., Shi, S.N., Song, L., Tan, L., Li, M.D., Liu, J.X., and Xue, L.L., Efficient treatment of phenolic wastewater with high salinity using a novel integrated system of magnetically immobilized cells coupling with electrodes, Bioresour. Technol., 2016, vol. 218, pp. 108–114.

    Article  CAS  Google Scholar 

  4. Villegas, L.G.C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K.E., and Biswas, N., A short review of techniques for phenol removal from wastewater, Curr. Pollut. Rep., 2016, vol. 2, pp. 157–167.

    Article  CAS  Google Scholar 

  5. Mohammadi, S., Kargari, A., Sanaeepur, H., Abbassian, K., Najafi, A., and Mofarrah, E., Phenol removal from industrial wastewaters: A short review, Desalin. Water Treat., 2015, vol. 53, pp. 2215–2234.

    Article  CAS  Google Scholar 

  6. Zhang, J.Y., Hu, A.X., Wang, Y., Xiao, X.H., Guo, J.B., and Luo, X.F., The separation of catechol from carbofuran phenol by extractive distillation, Chin. J. Chem. Eng., 2009, vol. 17, pp. 42–46.

    Article  Google Scholar 

  7. Zhuo, Y.Y., Zhong, Y.X., Xu, Y.L., and Sha, Y., Evaluation of transfer resistances in the reactive distillation process for phenol production, Ind. Eng. Chem. Res., 2016, vol. 55, pp. 257–266.

    Article  CAS  Google Scholar 

  8. Ma, Y., Cui, P., Wang, Y., Zhu, Z., Wang, Y., and Gao, J., A review of extractive distillation from an azeotropic phenomenon for dynamic control, Chin. J. Chem. Eng., 2019, vol. 27, pp. 1510–1522.

    Article  CAS  Google Scholar 

  9. Ye, J.C., Li, J., Sha, Y., Xu, Y.L., and Zhou, D.W., Novel reactive distillation process for phenol production with a dry cation exchange resin as the catalyst, Ind. Eng. Chem. Res., 2014, vol. 53, pp. 12614–12621.

    Article  CAS  Google Scholar 

  10. Norwitz, G., Nataro, N., and Keliher, P.N., Study of the steam distillation of phenolic-compounds using ultraviolet spectrometry, Anal. Chem., 1986, vol. 58, pp. 639–641.

    Article  CAS  Google Scholar 

  11. Lakshmi, A.B., Balasubramanian, A., and Venkatesan, S., Extraction of phenol and chlorophenols using ionic liquid [Bmim](+)[BF4](–) dissolved in tributyl phosphate, Clean: Soil, Air, Water, 2013, vol. 41, pp. 349–355.

    Google Scholar 

  12. Li, H.D., Wan, L., Chu, G.Q., Tan, W., Liu, B.Y., Qin, Y.L., Feng, Y.Q., Sun, D.L., and Fang, Y.X., (Liquid + liquid) extraction of phenols from aqueous solutions with cineole, J. Chem. Thermodyn., 2017, vol. 107, pp. 95–103.

    Article  CAS  Google Scholar 

  13. Ji, Y.A., Hou, Y.C., Ren, S.H., Yao, C.F., and Wu, W.Z., Highly efficient extraction of phenolic compounds from oil mixtures by trimethylamine-based dicationic ionic liquids via forming deep eutectic solvents, Fuel Proc. Technol., 2018, vol. 171, pp. 183–191.

    Article  CAS  Google Scholar 

  14. Cui, P.Z., Chen, B.K., Yang, S.Y., and Qian, Y., Optimal design of an efficient polyphenols extraction process for high concentrated phenols wastewater, J. Clean. Prod., 2017, vol. 165, pp. 1395–1406.

    Article  CAS  Google Scholar 

  15. Huang, J.H., Jin, X.Y., and Deng, S.G., Phenol adsorption on an N-methylacetamide-modified hypercrosslinked resin from aqueous solutions, Chem. Eng. J., 2012, vol. 192, pp. 192–200.

    Article  CAS  Google Scholar 

  16. Abburi, K., Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutions on Amberlite XAD-16 resin, J. Hazard. Mater., 2003, vol. 105, pp. 143–156.

    Article  CAS  Google Scholar 

  17. Ahmaruzzaman, M. and Sharma, D.K., Adsorption of phenols from wastewater, Adv. Colloid Interface Sci., 2005, vol. 287, pp. 14–24.

    Article  CAS  Google Scholar 

  18. El-Naas, M.H., Al-Zuhair, S., and Abu Alhaija, M., Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon, Chem. Eng. J., 2010, vol. 162, pp. 997–1005.

    Article  CAS  Google Scholar 

  19. Singh, K.P., Malik, A., Sinha, S., and Ojha, P., Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material, J. Hazard. Mater., 2008, vol. 150, pp. 626–641.

    Article  CAS  Google Scholar 

  20. Bello, M.M., Raman, A.A.A., and Purushothaman, M., Applications of fluidized bed reactors in wastewater treatment—a review of the major design and operational parameters, J. Cleaner Prod., 2017, vol. 141, pp. 1492–1514.

    Article  CAS  Google Scholar 

  21. Karri, R.R., Jayakumar, N.S., and Sahu, J.N., Modeling of fluidized-bed reactor by differential evolution optimization for phenol removal using coconut shells based activated carbon, J. Mol. Liq., 2017, vol. 231, pp. 249–262.

    Article  CAS  Google Scholar 

  22. El-Naas, M.H., Alhaija, M.A., and Al-Zuhair, S., Evaluation of an activated carbon packed bed for the adsorption of phenols from petroleum refinery wastewater, Environ. Sci. Pollut. Res., 2017, vol. 24, pp. 7511–7520.

    Article  CAS  Google Scholar 

  23. Li, W.W., Yan, J.J., Yan, Z.F., Song, Y.C., Jiao, W.Z., Qi, G.S., and Liu, Y.Z., Adsorption of phenol by activated carbon in rotating packed bed: Experiment and modeling, Appl. Therm. Eng., 2018, vol. 142, pp. 760–766.

    Article  CAS  Google Scholar 

  24. Girods, P., Dufour, A., Fierro, V., Rogaume, Y., Rogaume, C., Zoulalian, A., and Celzard, A., Activated carbons prepared from wood particleboard wastes: Characterization and phenol adsorption capacities, J. Hazard. Mater., 2009, vol. 166, pp. 491–501.

    Article  CAS  Google Scholar 

  25. Lorenc-Grabowska, E. and Rutkowski, P., High basicity adsorbents from solid residue of cellulose and synthetic polymer co-pyrolysis for phenol removal: Kinetics and mechanism, Appl. Surface Sci., 2014, vol. 316, pp. 435–442.

    Article  CAS  Google Scholar 

  26. Mohamed, F.S., Khater, W.A., and Mostafa, M.R., Characterization and phenols sorptive properties of carbons activated by sulphuric acid, Chem. Eng. J., 2006, vol. 116, pp. 47–52.

    CAS  Google Scholar 

  27. Liu, B.J., Li, Y., Gai, X.K., Yang, R.Q., Mao, J.W., and Shan, S.D., Exceptional adsorption of phenol and p-nitrophenol from water on carbon materials prepared via hydrothermal carbonization of corncob residues, Bioresources, 2016, vol. 11, pp. 7566–7579.

    Article  CAS  Google Scholar 

  28. Zhang, J., Jin, X.J., Gao, J.M., and Zhang, X.D., Phenol adsorption on nitrogen-enriched activated carbon prepared from bamboo residues, Bioresources, 2014, vol. 9, pp. 969–983.

    CAS  Google Scholar 

  29. Dehghani, M.H., Mostofi, M., Alimohammadi, M., McKay, G., Yetilmezsoy, K., Albadarin, A.B., Heibati, B., AlGhouti, M., Mubarak, N.M., and Sahu, J.N., High-performance removal of toxic phenol by single-walled and multi-walled carbon nanotubes: Kinetics, adsorption, mechanism and optimization studies, J. Ind. Eng. Chem., 2016, vol. 35, pp. 63–74.

    Article  CAS  Google Scholar 

  30. Senturk, H.B., Ozdes, D., Gundogdu, A., Duran, C., and Soylak, M., Removal of phenol from aqueous solutions by adsorption onto organomodified tirebolu bentonite: Equilibrium, kinetic and thermodynamic study, J. Hazard. Mater., 2009, vol. 172, pp. 353–362.

    Article  CAS  Google Scholar 

  31. Wang, G.F., Zhang, S., Hua, Y.Y., Su, X., Ma, S.J., Wang, J., Tao, Q., Wang, Y.J., and Komarneni, S., Phenol and/or Zn2+ adsorption by single- or dual-cation organomontmorillonites, Appl. Clay Sci., 2017, vol. 140, pp. 1–9.

    Article  CAS  Google Scholar 

  32. Dursun, G., Cicek, H., and Dursun, A.Y., Adsorption of phenol from aqueous solution by using carbonised beet pulp, J. Hazard. Mater., 2005, vol. 125, pp. 175–182.

    Article  CAS  Google Scholar 

  33. Huang, J.H., Treatment of phenol and p-cresol in aqueous solution by adsorption using a carbonylated hypercrosslinked polymeric adsorbent, J. Hazard. Mater., 2009, vol. 168, pp. 1028–1034.

    Article  CAS  Google Scholar 

  34. Han, J.X., Du, Z.J., Zou, W., Li, H.Q., and Zhang, C., In-situ improved phenol adsorption at ions-enrichment interface of porous adsorbent for simultaneous removal of copper ions and phenol, Chem. Eng. J., 2015, vol. 262, pp. 571–578.

    Article  CAS  Google Scholar 

  35. Polat, H., Molva, M., and Polat, M., Capacity and mechanism of phenol adsorption on lignite, Int. J. Miner. Process., 2006, vol. 79, pp. 264–273.

    Article  CAS  Google Scholar 

  36. Li, C.Y., Xu, M.W., Sun, X.C., Han, S., Wu, X.F., Liu, Y.N., Huang, J.H., and Deng, S.G., Chemical modification of amberlite xad-4 by carbonyl groups for phenol adsorption from wastewater, Chem. Eng. J., 2013, vol. 229, pp. 20–26.

    Article  CAS  Google Scholar 

  37. Shah, B.A., Patel, H.J., and Shah, A.V., Amputation of phenol using barium embedded and Ba-HDTMA modified power station solid waste: Column dynamics, J. Environ. Chem. Eng., 2016, vol. 4, pp. 3910–3925.

    Article  CAS  Google Scholar 

  38. Wang, R.C. and Chang, S.C., Adsorption/desorption of phenols onto granular activated carbon in a liquid-solid fluidized bed, J. Chem. Technol. Biotechnol., 1999, vol. 74, pp. 647–654.

    Article  CAS  Google Scholar 

  39. Sun, H., Yao, J., Cong, H., Li, Q., Li, D., and Liu, B., Enhancing the stability of supported liquid membrane in phenols removal process by hydrophobic modification, Chem. Eng. Res. Des., 2017, vol. 126, pp. 209–216.

    Article  CAS  Google Scholar 

  40. Hou, B.L., Kuang, Y., Han, H.J., Liu, Y., Ren, B.Z., Deng, R.J., and Hursthouse, A.S., Enhanced performance and hindered membrane fouling for the treatment of coal chemical industry wastewater using a novel membrane electro-bioreactor with intermittent direct current, Bioresour. Technol., 2019, vol. 271, pp. 332–339.

    Article  CAS  Google Scholar 

  41. Park, S., Nam, T., You, J., Kim, E.-S., Choi, I., Park, J., and Cho, K.H., Evaluating membrane fouling potentials of dissolved organic matter in brackish water, Water Res., 2018, vol. 149, pp. 65–73.

    Article  CAS  Google Scholar 

  42. Hamzah, N. and Leo, C.P., Fouling prevention in the membrane distillation of phenolic-rich solution using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles, Sep. Purif. Technol., 2016, vol. 167, pp. 79–87.

    Article  CAS  Google Scholar 

  43. Lefevre, S., Boutin, O., Ferrasse, J.H., Malleret, L., Faucherand, R., and Viand, A., Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process, Chemosphere, 2011, vol. 84, pp. 1208–1215.

    Article  CAS  Google Scholar 

  44. Suárez-Ojeda, M.E., Carrera, J., Metcalfe, I.S., and Font, J., Wet air oxidation (WAO) as a precursor to biological treatment of substituted phenols: Refractory nature of the WAO intermediates, Chem. Eng. J., 2008, vol. 144, pp. 205–212.

    Article  CAS  Google Scholar 

  45. Yadav, A., Teja, A.K., and Verma, N., Removal of phenol from water by catalytic wet air oxidation using carbon bead-supported iron nanoparticle-containing carbon nanofibers in an especially configured reactor, J. Environ. Chem. Eng., 2016, vol. 4, pp. 1504–1513.

    Article  CAS  Google Scholar 

  46. Mohite, R.G. and Garg, A., Performance of heterogeneous catalytic wet oxidation for the removal of phenolic compounds: Catalyst characterization and effect of ph, temperature, metal leaching and non-oxidative hydrothermal reaction, J. Environ. Chem. Eng., 2017, vol. 5, pp. 468–478.

    Article  CAS  Google Scholar 

  47. Fu, D.M., Zhang, F.F., Wang, L.Z., Yang, F., and Liang, X.M., Simultaneous removal of nitrobenzene and phenol by homogenous catalytic wet air oxidation, Chin. J. Catal., 2015, vol. 36, pp. 952–956.

    Article  CAS  Google Scholar 

  48. Yang, S.X., Cui, Y.H., Sun, Y., and Yang, H.W., Graphene oxide as an effective catalyst for wet air oxidation of phenol, J. Hazard. Mater., 2014, vol. 280, pp. 55–62.

    Article  CAS  Google Scholar 

  49. Espinosa de los Monteros, A., Lafaye, G., Cervantes, A., del Angel, G., Barbier, J., and Torres, G., Catalytic wet air oxidation of phenol over metal catalyst (Ru,Pt) supported on TiO2–CeO2 oxides, Catal. Today, 2015, vol. 258, pp. 564–569.

    Article  CAS  Google Scholar 

  50. Chen, H., Sayari, A., Adnot, A., and Larachi, F., Composition–activity effects of Mn–Ce–O composites on phenol catalytic wet oxidation, Appl. Catal., B, 2001, vol. 32, pp. 195–204.

    Article  Google Scholar 

  51. Chang, L.Z., Chen, I.P., and Lin, S.S., An assessment of the suitable operating conditions for the CeO2/γ-Al2O3 catalyzed wet air oxidation of phenol, Chemosphere, 2005, vol. 58, pp. 485–492.

    Article  CAS  Google Scholar 

  52. Moussavi, G., Khavanin, A., and Alizadeh, R., The integration of ozonation catalyzed with MgO nanocrystals and the biodegradation for the removal of phenol from saline wastewater, Appl. Catal., B, 2010, vol. 97, pp. 160–167.

    Article  CAS  Google Scholar 

  53. Wang, Y., Yang, W.Z., Yin, X.S., and Liu, Y., The role of Mn-doping for catalytic ozonation of phenol using Mn/γ-Al2O3 nanocatalyst: Performance and mechanism, J. Environ. Chem. Eng., 2016, vol. 4, pp. 3415–3425.

    Article  CAS  Google Scholar 

  54. Shao, Y. and Chen, H.H., Heterogeneous Fenton oxidation of phenol in fixed-bed reactor using Fe nanoparticles embedded within ordered mesoporous carbons, Chem. Eng. Res. Des., 2018, vol. 132, pp. 57–68.

    Article  CAS  Google Scholar 

  55. Sun, J.R., Lu, H.Y., Lin, H.B., Du, L.L., Huang, W.M., Li, H.D., and Cui, T., Electrochemical oxidation of aqueous phenol at low concentration using Ti/BDD electrode, Sep. Purif. Technol., 2012, vol. 88, pp. 116–120.

    Article  CAS  Google Scholar 

  56. Amado-Piña, D., Roa-Morales, G., Barrera-Díaz, C., Balderas-Hernandez, P., Romero, R., del Campo, E.M., and Natividad, R., Synergic effect of ozonation and electrochemical methods on oxidation and toxicity reduction: Phenol degradation, Fuel, 2017, vol. 198, pp. 82–90.

    Article  CAS  Google Scholar 

  57. Andrade, M.A., Carmona, R.J., Mestre, A.S., Matos, J., Carvalho, A.P., and Ania, C.O., Visible light driven photooxidation of phenol on TiO2/Cu-loaded carbon catalysts, Carbon, 2014, vol. 76, pp. 183–192.

    Article  CAS  Google Scholar 

  58. Lin, S.H., Chiou, C.H., Chang, C.K., and Juang, R.S., Photocatalytic degradation of phenol on different phases of TiO2 particles in aqueous suspensions under UV irradiation, J. Environ. Manage., 2011, vol. 92, pp. 3098–3104.

    Article  CAS  Google Scholar 

  59. Ling, H.J., Kim, K., Liu, Z.W., Shi, J., Zhu, X.J., and Huang, J., Photocatalytic degradation of phenol in water on as-prepared and surface modified TiO2 nanoparticles, Catal. Today, 2015, vol. 258, pp. 96–102.

    Article  CAS  Google Scholar 

  60. Martínez Nieto, L., Hodaifa, G., Rodriguez, S., Giménez, J.A., and Ochando, J., Degradation of organic matter in olive-oil mill wastewater through homogeneous Fenton-like reaction, Chem. Eng. J., 2011, vol. 173, pp. 503–510.

    Article  CAS  Google Scholar 

  61. Santos, I.D., Afonso, J.C., and Dutra, A.J.B., Behavior of a Ti/RuO2 anode in concentrated chloride medium for phenol and their chlorinated intermediates electrooxidation, Sep. Purif. Technol., 2010, vol. 76, pp. 151–157.

    Article  CAS  Google Scholar 

  62. Babuponnusami, A. and Muthukumar, K., Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron, Sep. Purif. Technol., 2012, vol. 98, pp. 130–135.

    Article  CAS  Google Scholar 

  63. Pillai, I.M.S. and Gupta, A.K., Anodic oxidation of coke oven wastewater: Multiparameter optimization for simultaneous removal of cyanide, cod and phenol, J. Environ. Manage., 2016, vol. 176, pp. 45–53.

    Article  CAS  Google Scholar 

  64. Chen, D., Shen, J.Y., Jiang, X.B., Mu, Y., Ma, D.H., Han, W.Q., Sun, X.Y., Li, J.S., and Wang, L.J., Fabrication of polypyrrole/beta-MnO2 modified graphite felt anode for enhancing recalcitrant phenol degradation in a bioelectrochemical system, Electrochim. Acta, 2017, vol. 244, pp. 119–128.

    Article  CAS  Google Scholar 

  65. Shet, A. and Shetty, K.V., Solar light mediated photocatalytic degradation of phenol using Ag core–TiO2 shell (Ag@TiO2) nanoparticles in batch and fluidized bed reactor, Sol. Energy, 2016, vol. 127, pp. 67–78.

    Article  CAS  Google Scholar 

  66. Krastanov, A., Alexieva, Z., and Yemendzhiev, H., Microbial degradation of phenol and phenolic derivatives, Eng. Life Sci., 2013, vol. 13, pp. 76–87.

    Article  CAS  Google Scholar 

  67. Su, X.M., Wang, Y.Y., Xue, B.B., Zhang, Y.G., Mei, R.W., Zhang, Y., Hashmi, M.Z., Lin, H.J., Chen, J.R., and Sun, F.Q., Resuscitation of functional bacterial community for enhancing biodegradation of phenol under high salinity conditions based on Rpf, Bioresour. Technol., 2018, vol. 261, pp. 394–402.

    Article  CAS  Google Scholar 

  68. Li, J.H., Li, X.N., Feng, W.P., Huang, L., Zhao, Y., Hu, Y., and Cai, K.Y., Octopus-like PtCu nanoframe as peroxidase mimic for phenol removal, Mater. Lett., 2018, vol. 229, pp. 193–197.

    Article  CAS  Google Scholar 

  69. Ferrer-Polonio, E., Mendoza-Roca, J.A., Iborra-Clar, A., Alonso-Molina, J.L., and Pastor-Alcañiz, L., Biological treatment performance of hypersaline wastewaters with high phenols concentration from table olive packaging industry using sequencing batch reactors, J. Ind. Eng. Chem., 2016, vol. 43, pp. 44–52.

    Article  CAS  Google Scholar 

  70. Ke, Q., Zhang, Y.G., Wu, X.L., Su, X.M., Wang, Y.Y., Lin, H.J., Mei, R.W., Zhang, Y., Hashmi, M.Z., Chen, C.J., and Chen, J.R., Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers, J. Environ. Manage., 2018, vol. 222, pp. 185–189.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candan Eryılmaz.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candan Eryılmaz, Ayten Genç Review of Treatment Technologies for the Removal of Phenol from Wastewaters. J. Water Chem. Technol. 43, 145–154 (2021). https://doi.org/10.3103/S1063455X21020065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X21020065

Keywords:

Navigation