Skip to main content
Log in

Multifunctional Polypyrrole/Multi-Walled Carbon Nanotube Composite Material: Dielectric, Humidity Sensing and Broadband EMI Shielding Properties

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Conducting polymer composites with suitable combination of two components in nanoscale are expected to facilitate wider applications of composites. In this study, polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) nanocomposites prepared by in situ chemical oxidative polymerization were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and UV–Vis spectroscopy. The electrical and dielectric properties were investigated using complex impedance technique. Complex dielectric permittivity, complex electric modulus and complex impedance variations were studied in the frequency range of 10 Hz–1 MHz. The dielectric attributes and conductivity data of different nanocomposites analyzed as a function of frequency revealed that the incorporation of MWCNT phase into polypyrrole matrix affects the electrical and dielectric properties of the composites. Humidity sensor measurements show that PPy/MWCNT can be effectively optimized as candidate for humidity detection. The nanocomposites were also studied for broadband EMI shielding applications by characterizing the materials in the 12‒18 GHz (Ku band) to understand the shielding properties. The absorption dominant shielding effectiveness (SE) observed in the range of ‒13 to ‒15 dB was stable with visible variation with varying concentration of MWCNT in PPy. The experimental results of dielectric characterization, humidity sensing and EMI shielding response reveal that PPy/MWCNT composite can be suitable multifunctional material for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. B. Scrosati, Mater. Sci. Forum 42, 207 (1991).

    Article  Google Scholar 

  2. S. Biallozor and A. Kupniewska, Synth. Met. 155, 443 (2005).

    Article  CAS  Google Scholar 

  3. G. Kaur, R. Adhikari, P. Cass, M. Bown, and P. Gunatillake, RSC Adv. 5, 37553 (2015).

  4. T. K. Das and S. Prusty, Polym.-Plast. Technol. Eng. 51, 1487 (2012).

    Article  CAS  Google Scholar 

  5. R. Balint, N. J. Cassidy, and S. H. Cartmell, Acta Biomater. 10, 2341 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. M. Ajmal, M. U. Islam, and A. Ali, J. Supercond. Novel Magn. 31, 1375 (2018).

    Article  CAS  Google Scholar 

  7. C. Peng, S. Zhang, D. Jewell, and G. Z. Chen, Prog. Nat. Sci. 18, 777 (2008).

    Article  CAS  Google Scholar 

  8. D. D. Ateh, H. A. Navsaria, and P. Vadgama, J. R. Soc., Interface 3, 741 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. C. Kingston, R. Zepp, A. Andrady, D. Boverhof, R. Fehir, D. Hawkins, J. Roberts, P. Sayre, B. Shelton, Y. Sultan, V. Vejins, and W. Wohlleben, Carbon 68, 33 (2014).

    Article  CAS  Google Scholar 

  10. Y. Berdichevsky and Y.-H. Lo, MRS Online Proc. Libr. 872, J13.4 (2005).

  11. I. Ebrahimi,and M. P. Gashti, J. Phys. Chem. Solids 118, 80 (2018).

    Article  CAS  Google Scholar 

  12. N. G. Sahoo, Y. C. Jung, H. H. So, and J. W. Cho, Synth. Met. 157, 374 (2007).

    Article  CAS  Google Scholar 

  13. A. Bahrami, Z. Talib, W. M. Mat Yunus, K. Behzad, and N. Soltani, Adv. Mater. Res. 364, 50 (2011).

    Article  CAS  Google Scholar 

  14. Z.-M. Wang, X.-C. Tang, Y. Xiao, X.-J. Yu, L. Zhang, D.-Z. Jia, and G.-C. Chen, J. Inorg. Mater. 26, 961 (2011).

    Article  CAS  Google Scholar 

  15. J. Park, N. Raseda, E. S. Oh, and K. Ryu, J. Appl. Polym. Sci. 133, 43307 (2016).

    Article  CAS  Google Scholar 

  16. T.-M. Wu and S.-H. Lin, J. Polym. Sci., Part B: Polym. Phys. 44, 1413 (2006).

    Article  CAS  Google Scholar 

  17. Y. Lee and J.-A. Choi, Bull. Korean Chem. Soc. 31, 1228 (2010).

    Article  CAS  Google Scholar 

  18. X. Yuan, X.-L. Ding, C.-Y. Wang, and Z.-F. Ma, Energy Environ. Sci. 6, 1105 (2013).

    Article  CAS  Google Scholar 

  19. M. Vellakkat and D. Hundekkal, Mater. Res. Express 3, 015502 (2016).

    Article  CAS  Google Scholar 

  20. T.-H. Le, Y. Kim, and H. Yoon, Polymers 9, 150 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  21. B. D. Che, B. Q. Nguyen, L.-T. T. Nguyen, H. T. Nguyen, V. Q. Nguyen, T. Van Le, and N. H. Nguyen, Chem. Cent. J. 9, 10 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. M. Faisal and S. Khasim, J. Mater. Sci.: Mater. Electron. 24, 2202 (2013).

    CAS  Google Scholar 

  23. L. Kabir, A. R. Mandal, and S. K. Mandal, J. Exp. Nanosci. 3, 297 (2008).

    Article  CAS  Google Scholar 

  24. H. Farahani, R. Wagiran, and M. Hamidon, Sensors, 14, 7881 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. A. N. Papathanassiou, I. Sakellis, J. Grammatikakis, E. Vitoratos, S. Sakkopoulos, and E. Dalas, Synth. Met. 142, 81 (2004).

    Article  CAS  Google Scholar 

  26. H. Rasouli, L. Naji, and M. G. Hosseini, J. Electroanal. Chem. 836, 165 (2019).

    Article  CAS  Google Scholar 

  27. S. Bose, T. Kuila, Md. E. Uddin, N. H. Kim, A. K. T. Lau, and J. H. Lee, Polymer 51, 5921 (2010).

    Article  CAS  Google Scholar 

  28. S. Ali, I. A. Shah, A. Ahmad, J. Nawab, and H. Huang, Sci. Total Environ. 655, 1270 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. C. K. Madhusudhan, K. Mahendra, B. S. Madhukar, T. E. Somesh, and M. Faisal, Synth. Met. 267, 116450 (2020).

    Article  CAS  Google Scholar 

  30. F. Zhou, Y. Wang, W. Wu, T. Jing, S. Mei, and Y. Zhou, Sci. Rep. 6, 38000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S. Lu, X. Wang, Z. Meng, Q. Deng, F. Peng, C. Yu, X. Hu, Y, Zhao, Y. Ke, and F. Qi, RSC Adv. 9, 26691 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Majumder, R. B. Choudhary, A. K. Thakur, and I. Karbhal, RSC Adv. 7, 20037 (2017).

  33. D. P. Dubal, S. V. Patil, W. B. Kim, and C. D. Lokhande, Mater. Lett. 2011, 65, 2628 (2011).

  34. D. P. Dubal, S. H. Lee, J. G. Kim, W. B. Kim, and C. D. Lokhande, J. Mater. Chem. 22, 3044 (2012).

    Article  CAS  Google Scholar 

  35. H. P. de Oliveira, Fullerenes, Nanotubes Carbon Nanostruct. 23, 339 (2015).

    Article  CAS  Google Scholar 

  36. X. Wang, B. Zhang, L. Xu, X. Wang, Y. Hu, G. Shen, and L. Sun, Sci. Rep. 7, 8517 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. F. He, S. Lau, H. L. Chan, and J. Fan, Adv. Mater. 21, 710 (2009).

    Article  CAS  Google Scholar 

  38. J. Li, P. C. Ma, W. S. Chow, C. K. To, B. Z. Tang, and J.-K. Kim, Adv. Funct. Mater. 17, 3207 (2007).

    Article  CAS  Google Scholar 

  39. S. H. Xie, Y. Y. Liu, and J. Y. Li, Appl. Phys. Lett. 92, 243121 (2008).

    Article  CAS  Google Scholar 

  40. K. Bindu, K. M. Ajith, and H. S. Nagaraja, J. Alloys Compd. 735, 847 (2018).

    Article  CAS  Google Scholar 

  41. S. A. Mazen and N. I. Abu-Elsaad, J. Magn. Magn. Mater. 442, 72 (2017).

    Article  CAS  Google Scholar 

  42. K. Mahendra, S. Pujar, and N. K. Udayashankar, Appl. Phys. A: Mater. Sci. Process. 126, 728 (2020).

    Article  CAS  Google Scholar 

  43. K. Mahendra, K. S. Bhat, H. S. Nagaraja, and N. K. Udayashankar, J. Mater. Sci.: Mater. Electron. 30, 12566 (2019).

    CAS  Google Scholar 

  44. K. Mahendra, H. K. T. Kumar, and N. K. Udayashankar, Appl. Phys. A: Mater. Sci. Process. 125, 228 (2019).

    Article  CAS  Google Scholar 

  45. K. Bindu, K. M. Ajith, and H. S. Nagaraja, J. Alloys Compd. 735, 847 (2018).

    Article  CAS  Google Scholar 

  46. L. S. Ashwini, R. Sridhar, and S. S. Bellad, Mater. Chem. Phys. 200, 136 (2017).

    Article  CAS  Google Scholar 

  47. R. Khan, S. F. Zulfiqar, and Y. Zaman, J. Mater. Sci.: Mater. Electron. 27, 5960 (2016).

    CAS  Google Scholar 

  48. C. Gao, S. Zhang, F. Wang, B. Wen, C. Han, Y. Ding, and M. Yang, ACS Appl. Mater. Interfaces 6, 12252 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. K. M. Rosso, D. M. A. Smith, and M. Dupuis, J. Chem. Phys. 118, 6455 (2003).

    Article  CAS  Google Scholar 

  50. K. Mahendra and N. K. Udayashankar, Phys. Lett. A 384, 126475 (2020).

    Article  CAS  Google Scholar 

  51. S. A. Khader, M. Muneeswaran, N. V. Giridharan, and T. Sankarappa, AIP Conf. Proc. 1728, 020529 (2016).

    Article  Google Scholar 

  52. H. M. T. Farid, I. Ahmad, I. Ali, S. M. Ramay, A. Mahmood, and G. Murtaza, J. Magn. Magn. Mater. 434, 143 (2017).

    Article  CAS  Google Scholar 

  53. R. Vaish and K. B. R. Varma, J. Appl. Phys. 106, 064106 (2009).

    Article  CAS  Google Scholar 

  54. H. Chouaib, N. Elfaleh, S. Karoui, S. Kamoun, and M. P. F. Graça, Synth. Met. 217, 129 (2016).

    Article  CAS  Google Scholar 

  55. K. C. Sajjan, A. S. Roy, A. Parveen, and S. Khasim, J. Mater. Sci.: Mater. Electron. 25, 1237 (2014).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author (Madhusudhan C. K.) would like to thank Dean R and D, Principal and management of Vemana Institute of Technology, Koramangala, Bangalore for their support and encouragement. The authors thank Department of Polymer Science and Technology, SJCE College of Engineering, JSS Science and Technology University, Mysore, India for their support. Also, the authors would like to thank the management of PES University-Electronic City Campus, (formerly, PES Institute of Technology-Bangalore South Campus) Bangalore, India for their support and encouragement towards carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Faisal.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhusudhan, C.K., Mahendra, K., Madhukar, B.S. et al. Multifunctional Polypyrrole/Multi-Walled Carbon Nanotube Composite Material: Dielectric, Humidity Sensing and Broadband EMI Shielding Properties. Polym. Sci. Ser. B 63, 280–290 (2021). https://doi.org/10.1134/S156009042103009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156009042103009X

Navigation