Skip to main content
Log in

Kinetic Features of the Crosslinking Process for Compositions Based on Butyl Rubber and Dispersed Fillers

  • SYNTHESIS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The kinetics of formation of a three-dimensional structure in compositions based on butyl rubber and silicon-containing hyperbranched polymethylsilsesquioxanes and MQ copolymers is studied in comparison with compositions containing common dispersed phases: carbon black and silica. Features of the chemical structure of the synthesized organosilicon polymers make it possible to treat the morphology of their elementary particles as core–shell. The role of an inorganic “core” is played by silica structures, whereas methyl shells should ensure compatibility with the carbochain matrix of the rubber. Quinol ether is used as an agent of crosslinking via double bonds of the isoprene part of the rubber. The crosslinking process is carried out in the mode of continuous heating of compositions with registration of thermal effects by differential scanning calorimetry and dynamic moduli by oscillatory rheometry. The apparent activation energies of the process of chemical crosslinking under nonisothermal conditions are calculated in terms of various models. It is shown that the apparent activation energy of crosslinking is lower for filled systems. This indicates that rubber macromolecules are partially uninvolved in chemical crosslinking as a result of adsorption and loss of relaxation mobility. The adsorption activity of fillers is estimated from a difference in the activation energies of the initial rubber and filled compositions; this parameter is the lowest for polymethylsilsesquioxanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. E. Mark, B. Erman, and F. R. Eirich, Science and Technology of Rubber (Acad. Press, New York, 2005).

    Google Scholar 

  2. S. Samaržija-Jovanović, V. Jovanović, and G. Marković, J. Therm. Anal. Calorim. 94, 797 (2008).

    Article  Google Scholar 

  3. L. Chen, Z. Jia, Y. Tang, L. Wu, Y. Luo, and D. Jia, Compos. Sci. Technol. 144, 11 (2017).

    Article  CAS  Google Scholar 

  4. V. F. Kablov and V. I. Aksenov, Prom. Proizvod. Ispol’z. Elastomerov, No. 3, 24 (2018).

    Google Scholar 

  5. Y. Li, B. Han, L. Liu, F. Zhang, L. Zhang, S. Wen, Y. Lu, H. Yang, and J. Shen, Compos. Sci. Technol. 88, 69 (2013).

    Article  CAS  Google Scholar 

  6. C. Zhang, Z. Tang, B. Guo, and L. Zhang, Compos. Sci. Technol. 156, 70 (2018).

    Article  CAS  Google Scholar 

  7. C. Zhang, Z. Tang, B. Guo, and L. Zhang, Compos. Sci. Technol. 169, 217 (2019).

    Article  CAS  Google Scholar 

  8. M. N. Temnikov, S. N. Zimovets, V. G. Vasil’ev, and M. I. Buzin, INEOS OPEN 3, 112 (2020).

    Article  CAS  Google Scholar 

  9. D. Migulin, E. Tatarinova, I. Meshkov, G. Cherkaev, N. Vasilenko, M. Buzin, and A. Muzafarov, Polym. Int. 65, 72 (2016).

    Article  CAS  Google Scholar 

  10. A. I. Amirova, O. V. Golub, D. A. Migulin, and A. M. Muzafarov, Int. J. Polym. Anal. Charact. 21, 214 (2016).

    Article  CAS  Google Scholar 

  11. E. Tatarinova, N. Vasilenko, and A. Muzafarov, Molecules 22, 1768 (2017).

    Article  Google Scholar 

  12. O. A. Serenko, V. G. Shevchenko, A. S. Zhiltsov, T. V. Zaderenko, O. T. Gritsenko, O. B. Gorbatsevich, V. V. Kazakova, A. M. Muzafarov, V. E. Chuprakov, M. V. Mironova, and V. G. Kulichikhin, Nanotechnol. Russ. 8, 81 (2013).

    Article  Google Scholar 

  13. O. A. Serenko, A. M. Muzafarov, M. V. Mironova, V. G. Kulichikhin, N. A. Novozhilova, P. V. Strashnov, E. V. Getmanova, V. G. Shevchenko, and A. A. Askadskii, Mater. Chem. Phys. 156, 16 (2015).

    Article  CAS  Google Scholar 

  14. I. B. Meshkov, A. A. Kalinina, V. V. Kazakova, and A. I. Demchenko, INEOS OPEN 3, 118 (2020).

    Article  CAS  Google Scholar 

  15. O. A. Serenko and A. M. Muzafarov, Polym. Sci., Ser. C 58, 93 (2016).

    Article  CAS  Google Scholar 

  16. E. A. Karpukhina, S. O. Il’in, V. V. Makarova, I. B. Meshkov, and V. G. Kulichikhin, Polym. Sci., Ser. A 56, 798 (2014).

    Article  CAS  Google Scholar 

  17. A. Ya. Malkin and S. G. Kulichikhin, Rheology in the Processes of Polymer Formation and Conversion (Khimiya, Moscow, 1985) [in Russian].

    Google Scholar 

  18. A. A. Donskoi, S. G. Kulichikhin, V. A. Shershnev, V. D. Yulovskaya, and A. Ya. Malkin, Vysokomol. Soedin., Ser. A 34, 62 (1992).

    CAS  Google Scholar 

  19. V. E. Dreval’, S. V. Emel’yanov, V. A. Shershnev, V. G. Kulichikhin, A. E. Chalykh, A. D. Aliev, and M. V. Vokal, Polym. Sci., Ser. A 47, 730 (2005).

    Google Scholar 

  20. M. Lipińska and M. Imiela, Polym. Test. 75, 26 (2019).

    Article  Google Scholar 

  21. I. B. Meshkov, N. G. Mazhorova, P. V. Zhemchugov, A. A. Kalinina, S. G. Vasil’ev, A. V. Bystrova, S. E. Lyubimov, A. S. Tereshchenko, and A. M. Muzafarov, INEOS OPEN 2, 140 (2019).

    Article  CAS  Google Scholar 

  22. E. Yu. Belyaev, I. G. Gakh, G. A. Gareev, Z. A. Dobronravova, E. A. Makhova, V. M. Likhosherstov, A. M. Shako, and Ya. I. Shinnel’, SU Patent No. 1594173A1 (1990).

  23. L. M. Gan and C. H. Chew, Rubber Chem. Technol. 56, 883 (1983).

    Article  CAS  Google Scholar 

  24. I. O. Klyuchnikov, O. R. Klyuchnikov, and O. V. Stoyanov, Polym. Sci., Ser. D 9, 157 (2016).

    CAS  Google Scholar 

  25. M. V. Mironova, I. B. Meshkov, A. A. Shabeko, V. V. Shutov, V. G. Kulichikhin, and E. A. Tatarinova, INEOS OPEN 3, 29 (2020).

    Article  CAS  Google Scholar 

  26. S. Samaržija-Jovanović, V. Jovanović, G. Marković, and M. Marinović-Cincović, J. Therm. Anal. Calorim. 98, 275 (2009).

    Article  Google Scholar 

  27. S. Vyazovkin and N. Sbirrazzuoli, Macromolecules 29, 1867 (1996).

    Article  CAS  Google Scholar 

  28. S. Vyazovkin and C. A. Wight, Thermochim. Acta 340–341, 53 (1999).

    Article  Google Scholar 

  29. B. Saha and A. K. Ghoshal, Thermochim. Acta 451, 27 (2006).

    Article  CAS  Google Scholar 

  30. J. Wang, M.-P. G. Laborie, and M. P. Wolcott, Thermochim. Acta 439, 68 (2005).

    Article  CAS  Google Scholar 

  31. A. Kandelbauer, G. Wuzella, A. Mahendran, I. Taudes, and P. Widsten, Chem. Eng. J. 152, 556 (2009).

    Article  CAS  Google Scholar 

  32. H. E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  CAS  Google Scholar 

  33. P. E. Sánchez-Jiménez, J. M. Criado, and L. A. Pérez-Maqueda, J. Therm. Anal. Calorim. 94, 427 (2008).

    Article  Google Scholar 

  34. H. Schulz, ChemTexts 4 (3), 9 (2018).

    Article  Google Scholar 

  35. C. Y. M. Tung and P. J. Dynes, J. Appl. Polym. Sci. 27, 569 (1982).

    Article  CAS  Google Scholar 

  36. A. Ya. Malkin, S. G. Kulichikhin, E. Ya. Naroditskaya, V. Ya. Pozdnyakov, I. N. Yunitskii, and V. V. Kireev, Vysokomol. Soedin., Ser. A 27, 2040 (1985).

    CAS  Google Scholar 

  37. G. L. Slonimskii and L. Z. Rogovina, Vysokomol. Soedin., Ser. A 40, 994 (1998).

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-33-20247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Mironova.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironova, M.V., Shandryuk, G.A., Shabeko, A.A. et al. Kinetic Features of the Crosslinking Process for Compositions Based on Butyl Rubber and Dispersed Fillers. Polym. Sci. Ser. B 63, 199–208 (2021). https://doi.org/10.1134/S1560090421030118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421030118

Navigation