Skip to main content
Log in

Excited states of the Gaussian two-electron quantum dot

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We consider the \(1s2s\; {^{1,3}\! S}\) states of the two-electron three-dimensional quantum dot with a Gaussian one-body potential, \(-V_0\exp (-\lambda r^2)\). For a single electron, a simple scaling relation allows the reduction into a one-parameter problem in terms of \(\frac{V_0}{\lambda }\). However, for the two-electron system, the interelectronic repulsion term, \(\frac{1}{r_{12}}\), frustrates this simple scaling transformation, so we face a genuine two-parameter system. We pay particular attention to the location and nature of the critical well-depths, at which the binding energy of the second electron vanishes. Several observations are noteworthy: For all \(\lambda \), the triplet critical well-depth is lower than that in the singly excited singlet state. Hence, there exists a finite range of well-depths for which the triplet is bound and the singlet is not, a feature that can possibly be applied in some device. Above its critical well-depth, the triplet state energy is always lower than that of the singly excited singlet. Both well-depths are considerably higher than the critical well-depth in the ground state. The expectation value of the interelectronic repulsion is always lower in the triplet, like the harmonic quantum dot but unlike He-like atoms, the two-particle Debye (Yukawa) atom, or the confined He atom. In the infinite well-depth (\(V_0\)) limit, keeping the well-width \(\left( \frac{1}{\lambda }\right) \) constant, the energies and other expectation values of the bound states of the two-electron Gaussian quantum dot approach those of a non-interacting harmonic two-electron system.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no associated data.]

References

  1. N.S. Yahyah, M.K. Elsaid, A. Shaer, J. Theoret. Appl. Phys. 13, 277 (2019)

    Article  ADS  Google Scholar 

  2. G. Stephenson, J. Phys. A: Math. Gen. 10, L229 (1977)

    Article  ADS  Google Scholar 

  3. N. Bessis, G. Bessis, B. Joulakian, J. Phys. A: Math. Gen. 15, 3679 (1982)

    Article  ADS  Google Scholar 

  4. R.E. Crandall, J. Phys. A: Math. Gen. 16, L395 (1983)

    Article  ADS  Google Scholar 

  5. C.S. Lai, J. Phys. A: Math. Gen. 16, L181 (1983)

    Article  ADS  Google Scholar 

  6. M. Cohen, J. Phys. A: Math. Gen. 17, L101 (1984)

    Article  ADS  Google Scholar 

  7. A. Chatterjee, J. Phys. A: Math. Gen. 18, 2403 (1985)

    Article  ADS  Google Scholar 

  8. K. Köksal, Phys. Scr. 86, 035006 (2012)

    Article  Google Scholar 

  9. H. Mutuk, Pramana -. J. Phys. 92, 66 (2019)

    Google Scholar 

  10. N. Moiseyev, J. Katriel, Theoret. Chim. Acta 41, 321 (1976)

    Article  Google Scholar 

  11. E.Z. Liverts, N. Barnea, J. Phys. A: Math. Theor. 44, 375303 (2011)

    Article  Google Scholar 

  12. F.M. Fernández, J. Garcia, Appl. Math. Comp. 220, 580 (2013)

    Article  Google Scholar 

  13. J. Adamowski, M. Sobkowicz, B. Szafran, S. Bednarek, Phys. Rev. B 62, 4234 (2000)

    Article  ADS  Google Scholar 

  14. B. Boyacioglu, M. Saglam, A. Chatterjee, J. Phys.: Condens. Matter 19, 456217 (2007)

    ADS  Google Scholar 

  15. Y. Sajeev, N. Moiseyev, Phys. Rev. B 78, 075316 (2008)

    Article  ADS  Google Scholar 

  16. S.S. Gomez, R.H. Romero, Cent. Eur. J. Phys. 7, 12 (2009)

    Google Scholar 

  17. A. Boda, B. Boyacioglu, A. Chatterjee, J. Appl. Phys. 114, 044311 (2013)

    Article  ADS  Google Scholar 

  18. L.A.A. Nikolopoulos, H. Bachau, Phys. Rev. A 94, 053409 (2016)

    Article  ADS  Google Scholar 

  19. M. Ali, M. Elsaid, A. Shaer, Jordan. J. Phys. 12, 247 (2019)

    Google Scholar 

  20. J. Katriel, H.E. Montgomery Jr., K.D. Sen, Phys. Plasmas 25, 092111 (2018)

    Article  ADS  Google Scholar 

  21. A. Sarsa, E. Buendía, F.J. Gálvez, J. Katriel, Chem. Phys. Lett. 702, 106 (2018)

    Article  ADS  Google Scholar 

  22. J. Katriel, H.E. Montgomery Jr., Eur. Phys. J. B 85, 394 (2012)

    Article  ADS  Google Scholar 

  23. J. Katriel, H.E. Montgomery Jr., J. Chem. Phys. 146, 064104 (2017)

    Article  ADS  Google Scholar 

  24. M. N. Guimarães and F. V. Prudente, 2005 J. Phys. B 38, 2811 (2005)

  25. I. Babuška, B.A. Szabó, I.N. Katz, SIAM J. Numer. Anal. 18, 515 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  26. G. Yao, S.I. Chu, Chem. Phys. Lett. 204, 381 (1993)

    Article  ADS  Google Scholar 

  27. X.M. Tong, S.I. Chu, Phys. Rev. A 64, 013417 (2001)

    Article  ADS  Google Scholar 

  28. A. K. Roy and S. I. Chu, Phys. Rev. A 65, 043402 (2002). ibid. 65, 052508 (2002)

  29. A.K. Roy, K.D. Sen, Phys. Lett. A 206, 357 (2012)

    Google Scholar 

  30. L. Zhu, Y.Y. He, L.G. Jiao, Y.C. Wang, Y.K. Ho, Int. J. Quant. Chem. 120, e26245 (2020)

    Google Scholar 

  31. M. Cinal, J. Math. Chem. 58, 1571 (2020)

    Article  MathSciNet  Google Scholar 

  32. E.A. Hylleraas, Z. Phys, 65, 209, , English translation in H. Hettema, Quantum Chemistry, World Scientific, Singapore 2000, 104–121 (1930)

  33. D. Baye, P.-H. Heenen, J. Phys. A 19, 2041 (1986)

  34. M. Hesse, D. Baye, J. Phys. B 32, 5605 (1999)

    Article  ADS  Google Scholar 

  35. M. Hesse, D. Baye, J. Phys. B 34, 1425 (2001)

  36. D. Baye, K.D. Sen, Phys. Rev. E 78, 026701 (2008)

    Article  ADS  Google Scholar 

  37. D. Baye, Phys. Rep. 565, 1 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  38. A.V. Turbiner, J.C. Lopez Vieyra, H. Olivare-Pilon, Ann. Phys. 409, 167908 (2019)

    Article  Google Scholar 

  39. A.S. Coolidge, H.M. James, Phys. Rev. 51, 855 (1937)

    Article  ADS  Google Scholar 

  40. C.L. Pekeris, Phys. Rev. 112, 1649 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  41. M. Bollhöfer, Y. Notay, Comput. Phys. Commun. 177, 951 (2007)

    Article  ADS  Google Scholar 

  42. L. Chen, J.S. Wright, J. Katriel, V.I. Korobov, J. Phys. B: At. Mol. Opt. Phys. 53, 075004 (2020)

    Article  ADS  Google Scholar 

  43. C.S. Estienne, M. Busuttil, A. Moini, G.W.F. Drake, Phys. Rev. Lett. 112, 173001 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

KDS thanks the Indian National Science Academy, New Delhi, for the award of a senior scientist position. He is grateful to Daniel Baye for a copy of the PERILAG code. We wish to thank Prof. Mohammad Elsaid of An-Najah University, Nablus, Palestine, for kindly providing us with pertinent data on the one-electron Gaussian quantum dot. We thank Mr. Hongrui Zhang for his involvement in some of the computations.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this paper.

Corresponding author

Correspondence to H. E. Montgomery Jr..

Appendices

Appendix A: Rescaling of the one-particle Gaussian energies

Some authors use Hamiltonians of the form

$$\begin{aligned} {\mathcal {H}}_A=-\frac{\hbar ^2}{2m^*}\nabla _{\rho }^2-V_A\exp (-\lambda _A\rho ^2) \, , \end{aligned}$$

where \(m^*=m_0\alpha \) is an appropriate effective mass.

Writing \(\rho =\sqrt{\eta } r\), we obtain

$$\begin{aligned} {\mathcal {H}}_A=-\frac{\hbar ^2}{2\eta m_0\alpha }\nabla _r^2-V_A\exp (-\lambda _A\eta r^2) \, . \end{aligned}$$

Multiplication by \(\eta \alpha \) yields

$$\begin{aligned} {\mathcal {H}}=\eta \alpha {\mathcal {H}}_A=-\frac{\hbar ^2}{2 m_0}\nabla _r^2-\eta \alpha V_A\exp (-\lambda _A\eta r^2) \, . \end{aligned}$$

Choosing \(V_0=\eta \alpha V_A\) and \(\lambda =\lambda _A\eta \), we obtain

$$\begin{aligned} {\mathcal {H}}=-\frac{\hbar ^2}{2 m_0}\nabla _r^2-V_0\exp (-\lambda r^2) \, . \end{aligned}$$

The eigenvalues of \({\mathcal {H}}\) are obtained from those of \({\mathcal {H}}_A\) by multiplication by \(\eta \alpha \).

Now, \(\eta =\frac{\lambda }{\lambda _A}\). Hence, \(V_0=\alpha \frac{\lambda }{\lambda _A} V_A\). To convert the eigenvalues of \({\mathcal {H}}_A\) to those of \({\mathcal {H}}\), we write

$$\begin{aligned} E=\eta \alpha E_A=\frac{\alpha }{\lambda _A} E_A \, . \end{aligned}$$

This relation is implicit in [11], and a similar argument is presented in [16].

Comparing our framework (\(m=1\), \(\lambda =\frac{1}{2}\) to that of Lai [5], etc. (\(m^*=0.5\), \(\lambda _A=1\), \(V_A=400\)), we should take \(\eta =\frac{1}{4}\). That yields \(V_0=\frac{1}{4}V_A=100\). Once we get the energy that corresponds to this \(V_0\) in our framework, we have to divide it by 4 to get the energy obtained by Lai [5] for \(\lambda =1\), \(V_A=400\).

The eigenfunctions of \({\mathcal {H}}\) are obtained from those of \({\mathcal {H}}_A\) as follows

$$\begin{aligned} \psi (r)=\eta ^{\frac{3}{4}}\psi _A(\sqrt{\eta }r) \, , \end{aligned}$$

where the factor \(\eta ^{\frac{3}{4}}\) is needed for normalization. It follows that the expectation value of \(\exp (-\lambda r^2)\) satisfies

$$\begin{aligned}&\int _0^{\infty }\psi (r)\exp (-\lambda r^2)\psi (r)4\pi r^2 dr\\&\quad = \int _0^{\infty } \psi _A(r)\exp (-\lambda _A r^2)\psi _A(r)4\pi r^2 dr \,. \end{aligned}$$

Similarly,

$$\begin{aligned}&\int _0^{\infty }\psi (r)\Big (r^2\exp (-\lambda r^2)\Big )\psi (r)4\pi r^2 dr\\&\quad =\frac{\lambda _A}{\lambda }\int _0^{\infty }\psi _A(r)\Big (r^2\exp (-\lambda _A r^2)\Big )\psi _A(r)4\pi r^2 dr \, . \end{aligned}$$

Appendix B: The virial and the Hellmann–Feynman theorems for one electron in a Gaussian potential

B.1: The virial theorem

Consider the commutator

$$\begin{aligned} \left[ r\frac{\partial }{\partial r},{\mathcal {H}}\right] =\frac{\hbar ^2}{m_0}\nabla _r^2+2\lambda V_0 r^2\exp (-\lambda r^2) \, . \end{aligned}$$

Evaluating the expectation value with respect to an eigenfunction of \({\mathcal {H}}\) we obtain

$$\begin{aligned} \frac{\hbar ^2}{m_0}\langle \psi |\nabla _r^2|\psi \rangle +2\lambda V_0 \langle \psi |r^2\exp (-\lambda r^2)|\psi \rangle =0 \,. \end{aligned}$$

This can be written in the form

$$\begin{aligned} \lambda V_0 \langle \psi |r^2\exp (-\lambda r^2)|\psi \rangle =-\frac{\hbar ^2}{2m_0}\langle \psi |\nabla _r^2|\psi \rangle \, ,\end{aligned}$$
(B.1)

where the expression on the right is the expectation value of the kinetic energy.

B.2: The Hellmann–Feynman Theorem

We consider the Hamiltonian

$$\begin{aligned} {\mathcal {H}}=-\frac{\hbar ^2}{2m_0}\nabla _{r}^2-V_0\exp (-\lambda r^2) \, . \end{aligned}$$

Let \(\psi \) be an eigenfunction with the eigenvalue E.

The Hellmann–Feynman theorem with respect to \(V_0\) yields

$$\begin{aligned} \frac{\partial E}{\partial V_0}=-\left\langle \psi |\exp (-\lambda r^2)|\psi \right\rangle \, .\end{aligned}$$
(B.2)

Another variant of the Hellmann–Feynman theorem is

$$\begin{aligned} \frac{\partial E}{\partial \lambda }=V_0\left\langle \psi |r^2\exp (-\lambda r^2)|\psi \right\rangle \, . \end{aligned}$$

We encountered this expectation value in the context of the virial theorem.

We obtain the (somewhat surprising) result

$$\begin{aligned} \lambda \frac{\partial E}{\partial \lambda }=-\frac{\hbar ^2}{2m_0}\langle \psi |\nabla _r^2|\psi \rangle \, .\end{aligned}$$
(B.3)

Substituting equations (B.2) and (B.3) in equation (B.1), we obtain

$$\begin{aligned} E-\lambda \frac{\partial E}{\partial \lambda }-V_0\frac{\partial E}{\partial V_0}=0 \, , \end{aligned}$$

which can be written in the equivalent form

$$\begin{aligned} \lambda \frac{\partial }{\partial \lambda }\left( \frac{E}{\lambda }\right) =-V_0\frac{\partial }{\partial V_0}\left( \frac{E}{\lambda }\right) \, . \end{aligned}$$

Defining \({\mathcal {E}}=\frac{E}{\lambda }\) we obtain

$$\begin{aligned} \lambda \frac{\partial {\mathcal {E}}}{\partial \lambda }=-V_0\frac{\partial {\mathcal {E}}}{\partial V_0} \, , \end{aligned}$$

which holds if \({\mathcal {E}}(V_0,\lambda )=f\left( \frac{\lambda }{V_0}\right) \). This is fully consistent with the rescaling of the one-particle Gaussian energies, derived in Appendix A.

Appendix C: The virial and the Hellmann–Feynman theorems for two interacting electrons in a Gaussian potential

C.1: The virial theorem for the two-electron system

Consider the Hamiltonian

$$\begin{aligned} {\mathcal {H}}=-\frac{\hbar ^2}{2 m_0}\left( \nabla _1^2+\nabla _2^2\right) -V_0\Big (\exp (-\lambda r_1^2)\!+\!(\exp (-\lambda r_2^2)\Big )+\frac{1}{r_{12}}. \end{aligned}$$

We evaluate the commutator

$$\begin{aligned}&\left[ r_1\frac{\partial }{\partial r_1}+r_2\frac{\partial }{\partial r_2},{\mathcal {H}}\right] =\frac{\hbar ^2}{m_0}\Big (\nabla _1^2\\&\quad +\nabla _2^2\Big )+2\lambda V_0 \Big (r_1^2\exp (-\lambda r_1^2)+r_2^2\exp (-\lambda r_2^2)\Big )-\frac{1}{r_{12}} \, . \end{aligned}$$

Hence,

$$\begin{aligned}&\frac{\hbar ^2}{m_0}\left\langle \nabla _1^2+\nabla _2^2\right\rangle +2\lambda V_0 \left\langle r_1^2\exp (-\lambda r_1^2)\right. \\&\quad \left. +r_2^2\exp (-\lambda r_2^2)\right\rangle -\left\langle \frac{1}{r_{12}}\right\rangle =0 \, . \end{aligned}$$

C.2: The Hellmann–Feynman theorem for the two-electron system

Here,

$$\begin{aligned} \frac{\partial E}{\partial V_0}=-\left\langle \Psi \Big {|}\exp (-\lambda r_1^2)+\exp (-\lambda r_2^2)\Big {|}\Psi \right\rangle \, , \end{aligned}$$
(C.1)

and

$$\begin{aligned} \frac{\partial E}{\partial \lambda }=V_0\left\langle \Psi \Big {|}r_1^2\exp (-\lambda r_1^2)+r_2^2\exp (-\lambda r_2^2)\Big {|}\Psi \right\rangle .\qquad \end{aligned}$$
(C.2)

From the first relation, we obtain

$$\begin{aligned} E=-\frac{\hbar ^2}{2m_0}\left\langle \nabla _1^2+\nabla _2^2\right\rangle +V_0\frac{\partial E}{\partial V_0}+\left\langle \frac{1}{r_{12}}\right\rangle \, , \end{aligned}$$

and from the second relation, substituting in the virial theorem we obtain

$$\begin{aligned} \lambda \frac{\partial E}{\partial \lambda }=-\frac{\hbar ^2}{2m_0}\left\langle \nabla _1^2+\nabla _2^2\right\rangle +\frac{1}{2}\left\langle \frac{1}{r_{12}}\right\rangle \, . \end{aligned}$$

Combining these relations, we obtain

$$\begin{aligned} \left\langle \frac{1}{r_{12}}\right\rangle =2\left( E-\lambda \frac{\partial E}{\partial \lambda }-V_0\frac{\partial E}{\partial V_0}\right) \,. \end{aligned}$$
(C.3)

Appendix D: Interelectronic repulsion in the harmonic oscillator framework

We consider the harmonic oscillator radial wave functions

$$\begin{aligned} \phi _{1s}(r)= & {} \frac{1}{\pi ^\frac{3}{4}}\exp (-\frac{r^2}{2}) \, , \nonumber \\ \phi _{2s}(r)= & {} \sqrt{\frac{3}{2}}\frac{1}{\pi ^{\frac{3}{4}}}(1-\frac{2}{3}r^2)\exp (-\frac{r^2}{2}) \, , \nonumber \\ \phi _{2p}(r)= & {} \sqrt{\frac{2}{3}}\frac{1}{\pi ^\frac{3}{4}}r\exp (-\frac{r^2}{2}) \, . \end{aligned}$$
(D.1)

The interelectronic repulsion in the \(1s^2\) state is

$$\begin{aligned} \left\langle \frac{1}{r_{12}}\right\rangle = 2\int _0^{\infty }dr_2 4\pi r_2^2 \int _{r_2}^{\infty }dr_1 4\pi r_1^2\frac{1}{r_1}\phi _{1s}^2(r_1)\phi _{1s}^2(r_2) \, . \end{aligned}$$

For the \(1s2s\; ^3S\) state

$$\begin{aligned} \left\langle \frac{1}{r_{12}}\right\rangle = J_{1s2s}-K_{1s2s} \, , \end{aligned}$$

where

$$\begin{aligned} J_{1s2s}= & {} \int _0^{\infty }dr_2 4\pi r_2^2\int _{r_2}^{\infty }dr_1 4\pi r_1^2\frac{1}{r_1}\phi _{1s}^2(r_1)\phi _{2s}^2(r_2)\\&+\int _0^{\infty }dr_2 4\pi r_2^2\int _0^{r_2}dr_1 4\pi r_1^2\frac{1}{r_2}\phi _{1s}^2(r_1)\phi _{2s}^2(r_2) , \end{aligned}$$

and

$$\begin{aligned}&K_{1s2s}=2\int _0^{\infty }dr_2 4\pi r_2^2\int _0^{r_2}dr_1 \\&\quad \times 4\pi r_1^2\frac{1}{r_2}\phi _{1s}(r_1)\phi _{2s}(r_1)\phi _{1s}(r_2)\phi _{2s}(r_2) \, . \end{aligned}$$

The corresponding singlet is a linear combination of the two states 1s2s and \(2p^2\) that are degenerate in the non-interacting limit. Hence, we consider the \(2\times 2\) matrix with elements

$$\begin{aligned} H_{11}=J_{1s2s}+K_{1s2s} \, , \\ H_{22}=F_0+10 F_2 \end{aligned}$$

where

$$\begin{aligned} F_0= & {} \int _0^{\infty }dr_2 4\pi r_2^2\int _{r_2}^{\infty }dr_1 4\pi r_1^2\frac{1}{r_1}\phi _{2p}^2(r_1)\phi _{2p}^2(r_2)\\&+\int _0^{\infty }dr_2 4\pi r_2^2\int _0^{r_2}dr_1 4\pi r_1^2\frac{1}{r_2}\phi _{2p}^2(r_1)\phi _{2p}^2(r_2)\, , \\ F_2= & {} \frac{1}{25}\left( \int _0^{\infty }dr_2 4\pi r_2^2\int _{r_2}^{\infty }dr_1 4\pi r_1^2\frac{r_2^2}{r_1^3}\phi _{2p}^2(r_1)\phi _{2p}^2(r_2) \right. \\&\left. +\int _0^{\infty }dr_2 4\pi r_2^2\int _0^{r_2}dr_1 4\pi r_1^2\frac{r_1^2}{r_2^3}\phi _{2p}^2(r_1)\phi _{2p}^2(r_2)\right) \, , \end{aligned}$$

and

$$\begin{aligned} H_{12}= & {} H_{21}=-\sqrt{\frac{2}{3}}\int _0^{\infty }dr_2 4\pi r_2^2\int _0^{r_2}dr_1\\&4\pi r_1^2\frac{r_1}{r_2^2}\phi _{1s}(r_1)\phi _{2s}(r_2)\phi _{2p}(r_1)\phi _{2p}(r_2) \\&+\int _0^{\infty }dr_2 4\pi r_2^2\int _{r_2}^{\infty }dr_1\\&4\pi r_1^2\frac{r_2}{r_1^2}\phi _{1s}(r_1)\phi _{2s}((r_2)\phi _{2p}(r_1)\phi _{2p}(r_2) \, . \end{aligned}$$

Evaluating these integrals, we obtain

$$\begin{aligned} \left\langle 1s^2\; ^1S\bigg {|}\frac{1}{r_{12}}\bigg {|} 1s^2\; ^1S\right\rangle =\sqrt{\frac{2}{\pi }}\approx 0.797885 \, , \\ \left\langle 1s2s\; ^3S\bigg {|}\frac{1}{r_{12}}\bigg {|} 1s2s\; ^3S\right\rangle =\frac{2}{3}\sqrt{\frac{2}{\pi }} \approx 0.531923 \, . \end{aligned}$$

For the excited singlet state

$$\begin{aligned} \left\langle 1s2s\; ^1S\bigg {|}\frac{1}{r_{12}}\bigg {|} 1s2s\; ^1S\right\rangle =\frac{11}{12}\sqrt{\frac{2}{\pi }} \, , \\ \left\langle 1s2s\; ^1S\bigg {|}\frac{1}{r_{12}}\bigg {|} 2p^2\; ^1S\right\rangle =\frac{1}{12}\sqrt{\frac{2}{\pi }} \, , \\ \left\langle 2p^2\, ^1S\bigg {|}\frac{1}{r_{12}}\bigg {|} 2p^2\, ^1S\right\rangle =\frac{11}{12}\sqrt{\frac{2}{\pi }} \, . \end{aligned}$$

The equality of the two diagonal matrix elements was not expected. Diagonalizing this \(2\times 2\) matrix, the lower eigenvalue is

$$\begin{aligned} \left\langle 1s2s+2p^2\, ^1S\bigg {|}\frac{1}{r_{12}}\bigg {|} 1s2s+2p^2\, ^1S\right\rangle =\frac{5}{6}\sqrt{\frac{2}{\pi }} \approx 0.664904 \, . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, K.D., Montgomery, H.E., Yu, B. et al. Excited states of the Gaussian two-electron quantum dot. Eur. Phys. J. D 75, 175 (2021). https://doi.org/10.1140/epjd/s10053-021-00183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00183-8

Navigation