Skip to main content
Log in

Bidirectional teleportation under correlated noise

  • Regular Article - Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this contribution, we investigate bidirectional quantum teleportation of single-qubit state, for the case in which qubits from the quantum channel of teleportation are distributed by typical correlated noisy channels such as bit-flip, phase-flip, depolarizing, and amplitude damping channels. Expressions of the negativity of the partially transposed density operator, fidelities of teleportation, and quantum Fisher information are evaluated, we found that all these quantities depend on factor noise and the correlation strength of the noisy channel. It is shown that the effect of the noise on entanglement, averaged fidelities of teleportation, and on quantum Fisher information could be noticeably reduced due to the existence of the noise channel correlations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: No supplementary data are needed for the verfication of research results.]

References

  1. M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  2. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. C. H. Bennett,“Quantum information and computation.”, Physics Today, 48.10:24-30 (1995)

  4. S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, S.L. Braunstein, Advances in quantum teleportation. Nature photonics 9(10), 641–652 (2015)

    Article  Google Scholar 

  5. D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  MATH  ADS  Google Scholar 

  6. H. Krauter et al., Deterministic quantum teleportation between distant atomic objects. Nature Phys. 9, 400 (2013)

    Article  ADS  Google Scholar 

  7. L. Steffen, Y. Salathe, M. Oppliger, P. Kurpiers, M. Baur, C. Lang, C. Eichler, G. Puebla-Hellmann, A. Fedorov, A. Wallraff, Nature 500, 319 (2013)

    Article  ADS  Google Scholar 

  8. J-G Ren, P. Xu, H-L. Yong, et al. Ground-to-satellite quantum teleportation. Nature, 2017, vol. 549, no 7670, p. 70-73

  9. X.-W. Zha, Z.-C. Zou, J.-X. Qi, H.-Y. Song, Int. J. Theor. Phys 52, 1740 (2013)

    Article  Google Scholar 

  10. S. Hassanpour, M. Houshmand, Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Information Processing 15(2), 905–912 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. E. Kiktenko, O. Evgeniy, A. Popov, A.K. Fedorov, Bidirectional imperfect quantum teleportation with a single Bell state. Physical Review A 93(6), 062305 (2016)

    Article  ADS  Google Scholar 

  12. M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich, Science 316, 579 (2007)

  13. J.S. Xu, X.Y. Xu, C.F. Li, C.J. Zhang, X.B. Zou, G.C. Guo, Nature Commun. 1, 7 (2010)

    Article  ADS  Google Scholar 

  14. Y.-X. Xie, X.-Q. Xi, Improving teleportation fidelity in structured reservoirs. Optics Communications 298, 267–271 (2013)

    Article  ADS  Google Scholar 

  15. Y.-H. Li, X.-M. Jin, Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Information Processing 15(2), 929–945 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. M.S. Sadeghi-Zadeh, M. Houshmand, H. Aghababa et al., Bidirectional quantum teleportation of an arbitrary number of qubits over noisy channel. Quantum Inf Process 18, 353 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Yang, B.-W. Lian, M. Nie, J. Jin, Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement. Chinese Physics B 26(4), 040305 (2017)

    Article  ADS  Google Scholar 

  18. C.W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York, 1976)

    MATH  Google Scholar 

  19. A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982)

    MATH  Google Scholar 

  20. S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall, Upper Saddle River, 1993)

    MATH  Google Scholar 

  21. V. Giovannetti, S. Lloyd, L. Maccone, Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  22. V. Giovannetti, S. Lloyd, L. Maccone, Advances in quantum metrology. Nat. Photon. 5, 222 (2011)

    Article  Google Scholar 

  23. M.G. Paris, Quantum estimation for quantum technology. Int Journal of Quantum Information 7(supp01), 125–137 (2009)

    Article  MATH  Google Scholar 

  24. P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezzé, A. Smerzi, Fisher information and multiparticle entanglement. Phys Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  25. T.L. Wang, L.N. Wu, W. Yang, G.R. Jin, N. Lambert, F. Nori, Quantum Fisher information as a signature of the superradiant quantum phase transition. New Journal of Physics 16(6), 063039 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  26. U. Marzolino, T. Prosen, Fisher information approach to nonequilibrium phase transitions in a quantum XXZ spin chain with boundary noise. Physical Review B 96(10), 104402 (2017)

    Article  ADS  Google Scholar 

  27. N. Metwally, Estimation of teleported and gained parameters in a non-inertial frame. Laser Phys. Let. 14, 045202 (2017)

    Article  ADS  Google Scholar 

  28. M. Jafarzadeh, H.R. Jahromi, M. Amniat-Talab, Teleportation of quantum resources and quantum Fisher information under Unruh effect. Quantum Information Processing 17, 165 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. X. Xiao, Y. Yao, W.J. Zhong, Y. Li, Y. Xie, Enhancing teleportation of quantum Fisher information by partial measurements. Phys Rev A 93(1), 012307 (2016)

    Article  ADS  Google Scholar 

  30. K. El Anouz, A. El Allati, N. Metwally, T. Mourabit, Estimating the teleported initial parameters of a single and two-qubit systems. Applied Physics B 125, 11 (2019)

    Article  Google Scholar 

  31. C. Seida, A. El Allati, N. Metwally, and Y.Hassouni Bidirectional teleportation using Fisher information. Modern Physics Letters A, 35(33), 2050272 (2020)

  32. J. Ma, Y.X. Huang, X. Wang, C.P. Sun, Phys. Rev. A 84, 022302 (2011)

    Article  ADS  Google Scholar 

  33. K. Berrada, S. Abdel-Khalek, A.S. Obada, Phys. Lett. A 376, 1412 (2012)

    Article  ADS  Google Scholar 

  34. G. Fürnkranz, The Quantum Internet. In The Quantum Internet (pp. 83-189). Springer, Cham (2020)

  35. L. K. Grover, Quantum telecomputation. arXiv:quant-ph/9704012 (1997)

  36. J. Sherson, H. Krauter, R.K. Olsson, B. Julsgaard, K. Ham-merer, J.I. Cirac, E.S. Polzik, Nature 443, 557 (2006)

    Article  ADS  Google Scholar 

  37. M.D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W.M. Itano, J.D. Jost, E. Knill, C. Langer, D. Leibfried, R. Oz-eri, D.J. Wineland, Nature 429, 737 (2004)

    Article  ADS  Google Scholar 

  38. T. Liu, The Applications and Challenges of Quantum Teleportation. In : Journal of Physics: Conference Series. IOP Publishing, p. 012089 (2020)

  39. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2006)

    MATH  Google Scholar 

  40. Z.Y. Wang, Z.-Y. Qin, Quantum teleportation, entanglement, and Bell nonlocality in correlated noisy channels. Laser Physics 30(5), 055201 (2020)

    Article  ADS  Google Scholar 

  41. C. Macchiavello, G.M. Palma, Entanglement-enhanced information transmission over a quantum channel with correlated noise. Physical Review A 65(5), 050301 (2002)

    Article  ADS  Google Scholar 

  42. Y. Yeo, A. Skeen, Time-correlated quantum amplitude-damping channel. Physical Review A 67(6), 064301 (2003)

    Article  ADS  Google Scholar 

  43. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  45. J. Lee, M.S. Kim, Entanglement teleportation via Werner states. Physical review letters 84(18), 4236 (2000)

    Article  ADS  Google Scholar 

  46. M. Paternostro, W. Son, M.S. Kim et al., Dynamical entanglement transfer for quantum-information networks. Physical Review A 70(2), 022320 (2004)

    Article  ADS  Google Scholar 

  47. K. Wang, R. Cai, X.T. Yu, Z.C. Zhang, Quantum Handshake Beacon in Communication System Using Bidirectional Quantum Teleportation. International Journal of Theoretical Physics 58(1), 121–135 (2019)

    Article  MATH  ADS  Google Scholar 

  48. A. El Allati, N. Metwally, Y. Hassouni, Transfer information remotely via noise entangled coherent channels. Opt. Commun. 284, 519526 (2011)

    Article  Google Scholar 

  49. W. Zhong, Z. Sun, J. Ma, X. Wang, F. Nori, Fisher information under decoherence in Bloch representation. Physical Review A 87(2), 022337 (2013)

    Article  ADS  Google Scholar 

  50. J. Dittmann, Explicit formulae for the Bures metric. Journal of Physics A: Mathematical and General 32(14), 2663 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. A. El Allati, H. Amellal, A. Meslouhi, Int. J. Quant. Inf. 17, 1950044 (2019)

    Article  Google Scholar 

  52. J. Maziero, T. Werlang, F.F. Fanchini et al., System-reservoir dynamics of quantum and classical correlations. Physical Review A 81(2), 022116 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Seida.

Appendix

Appendix

To evaluate the expression of QFI of the parameter \(\theta _A\), namely \(\mathcal {I}_{\theta _A}\), we use the formula (Eq. 17):

$$\begin{aligned} \mathcal {I}_{\theta _A} = |\partial _{\theta } \overrightarrow{a}|^{2}+\frac{(\overrightarrow{a}.\partial _{\theta } \overrightarrow{a})^{2}}{1-|\overrightarrow{a}|^{2}}, \end{aligned}$$
(50)

whereas \(\partial _{\theta }=\frac{\partial }{\partial _{\theta _A}}\).

The Bloch vectors of the teleported state (Eq. 24) are given as:

$$\begin{aligned} a_{x}^{(bf)}= & {} p_A {{\bar{p}}}_B\cos (\phi _A) \sin (\theta _A),\nonumber \\ a_{y}^{(bf)}= & {} - p_A {{\bar{p}}}_B\sin (\phi _A) \sin (\theta _A),\nonumber \\ a_{z}^{(bf)}= & {} p_A {{\bar{p}}}_B(\mathcal {E}^\mathrm{NPT}_{bf})\cos (\theta _A). \end{aligned}$$
(51)

The norm \(|\overrightarrow{a}|\):

$$\begin{aligned} |\overrightarrow{a}|= (p_A {{\bar{p}}}_B)^2 \Bigr (\sin (\theta _A)^2 + (\mathcal {E}^\mathrm{NPT} \cos (\theta _A))^2\Bigl ) \end{aligned}$$
(52)

and

$$\begin{aligned} \partial _{\theta } \overrightarrow{a}= \left\{ \begin{array}{lll} {{\bar{p}}}_B \cos (\phi _A) (\partial _{\theta }p_A \sin (\theta _A)+p_A \cos (\theta _A)) \\ -{{\bar{p}}}_B \sin (\phi _A) (\partial _{\theta }p_A \sin (\theta _A)+p_A \cos (\theta _A)) \\ {{\bar{p}}}_B \mathcal {E}^\mathrm{NPT}(\partial _{\theta }p_A \cos (\theta _A)-p_A \sin (\theta _A) ) \end{array} \right. \nonumber \\ \end{aligned}$$
(53)

The expression of QFI is given as follows:

$$\begin{aligned} \mathcal {I}_{\theta _A} = \chi +\frac{v^2}{1-|\overrightarrow{a}|^{2}}, \end{aligned}$$
(54)

where

$$\begin{aligned} \chi= & {} {{\bar{p}}}_B \Bigr ( (\partial _{\theta }p_A \sin (\theta _A)+p_A \cos (\theta _A))^2 \nonumber \\&+( \mathcal {E}^\mathrm{NPT}(\partial _{\theta }p_A \cos (\theta _A)-p_A \sin (\theta _A)))^2 \Bigl ); \end{aligned}$$
(55)

and

$$\begin{aligned} v= & {} p_A {{\bar{p}}}_B^2 \Bigr ((\partial _{\theta }p_A \sin (\theta _A)^2 + p_A \cos (\theta _A)\sin (\theta _A))\nonumber \\&+(\mathcal {E}^\mathrm{NPT})^2 (\partial _{\theta }p_A \cos (\theta _A)^2 - p_A\cos (\theta _A)\sin (\theta _A)) \Bigl )\nonumber \\ \end{aligned}$$
(56)

Similarly, QFI of the parameter \(\theta _B\) could be easily evaluated using the same method, QFI of \(\theta _B\) is given as:

$$\begin{aligned} \mathcal {I}_{\theta _B} = \mathcal {T}+\frac{w^2}{1-|\overrightarrow{a}|^{2}}, \end{aligned}$$
(57)

where

$$\begin{aligned} \mathcal {T}= & {} {{\bar{p}}}_{A} \Bigr ( (\partial _{\theta }p_B \sin (\theta _B)+p_B \cos (\theta _B))^2 \nonumber \\&+( \mathcal {E}^\mathrm{NPT}(\partial _{\theta }p_B \cos (\theta _B)-p_B \sin (\theta _B)))^2 \Bigl );\qquad \end{aligned}$$
(58)

and

$$\begin{aligned} w= & {} p_B {{\bar{p}}}_{A}^2 \Bigr ((\partial _{\theta }p_B \sin (\theta _B)^2 + p_B \cos (\theta _B)\sin (\theta _B))\nonumber \\&+(\mathcal {E}^\mathrm{NPT})^2 (\partial _{\theta }p_B \cos (\theta _B)^2 - p_B\cos (\theta _B)\sin (\theta _B)) \Bigl )\nonumber \\ \end{aligned}$$
(59)

using the same method, one can easily evaluate the QFI for the other types of noise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seida, C., El Allati, A., Metwally, N. et al. Bidirectional teleportation under correlated noise. Eur. Phys. J. D 75, 170 (2021). https://doi.org/10.1140/epjd/s10053-021-00184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00184-7

Navigation