Skip to main content
Log in

Corrosion-resistant composite coatings based on a graphene oxide–metal oxide/urushiol formaldehyde polymer system

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Composite coatings were fabricated based on a graphene oxide–metal oxide/urushiol formaldehyde polymer (GO–TiO2/UFP, GO–SiO2/UFP and GO–Y2O3/UFP) system with modifications, and its effectiveness in corrosion protection of metal substrates was demonstrated. First, a GO–TiO2 composite was synthesized using titanium dioxide loading on GO via 3-aminopropyltriethoxysilane (APTES). The GO–Y2O3 composite was synthesized using nano-yttrium oxide intercalating into GO through two different silane coupling agents. The GO–SiO2 composite was synthesized via an in-situ two-step sol-gel process utilizing APTES and tetraethylorthosilicate (TEOS) in an aqueous ethanol solution. The morphology and structure of the GO–metal oxide composites (GO–TiO2, GO–Y2O3 and GO–SiO2) were studied. Subsequently, GO–metal oxides were incorporated into UFP to investigate the composite’s effectiveness in corrosion protection of metal substrates. Compared with GO–TiO2/UFP and GO–Y2O3/UFP, GO–SiO2/UFP showed superior alkali-resistance enhancing performance. Additionally, GO crosslinked with APTES–TiO2 via covalent bonds and the well-dispersed GO–TiO2 in UFP improved the electrochemical corrosion properties of the UFP coatings, most likely due to the obstruction of the diffusion pathways inside the UFP coating matrix, thus preventing the diffusion of penetrating species. It was revealed that the corrosion resistance of GO–TiO2/UFP composite coating was noticeably higher than GO–SiO2/UFP and GO–Y2O3/UFP composite coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bai, WB, Lin, JH, “Characterisation of urushiol formaldehyde polymer/multihydroxyl polyacrylate/SiO2 nanocomposites prepared by the sol–gel method.” Prog. Org. Coat., 71 43–47 (2011)

    Article  CAS  Google Scholar 

  2. Xu, YL, Tong, ZQ, Xia, JR, Hu, BH, Lin, JH, “Urushiol-formaldehyde polymer microporous films with acid-alkali resistance property: Effects of formation conditions on surface morphologies.” Prog. Org. Coat., 72 586–591 (2011)

    Article  CAS  Google Scholar 

  3. Kim, HW, Miura, Y, Macosko, CW, “Graphene/polyurethane composites for improved gas barrier and electrical conductivity.” Chem. Mater., 22 3441–3450 (2010)

    Article  CAS  Google Scholar 

  4. Tang, J, Yao, W, Li, W, Xu, J, Jin, L, Zhang, J, Xu, Z, “Study on a novel composite coating based on PDMS doped with modified graphene oxide.” J. Coat. Technol. Res., 15 375–383 (2018)

    Article  CAS  Google Scholar 

  5. Carrasco-Valenzuela, L, Zaragoza-Contreras, EA, Vega-Rios, A, “Synthesis of graphene oxide/poly (3,4–ethylenedioxythiophene) composites by Fenton’s reagent.” Polymer, 130 124–134 (2017)

    Article  CAS  Google Scholar 

  6. Ma, HX, Xu, ZB, Qiu, JJ, Liu, CM, “Synthesis of artificial urushi via ring-opening reaction of benzoxazine with renewable cardanol.” Polymer, 132 41–50 (2017)

    Article  CAS  Google Scholar 

  7. He, LH, Zhao, Y, Xing, LY, Liu, PG, Wang, ZY, Zhang, YW, Liu, XF, “Preparation of phosphonic acid functionalized graphene oxide-modified aluminum powder with enhanced anticorrosive properties.” Appl. Surf. Sci., 411 235–239 (2017)

    Article  CAS  Google Scholar 

  8. Botas, C, Álvarez, P, Blanco, P, Granda, M, Blanco, C, Santamaría, R, Romasanta, LJ, Verdejo, R, López-Manchado, MA, Menéndez, R, “Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods.” Carbon, 65 156–164 (2013)

    Article  CAS  Google Scholar 

  9. Srinivas, G, Zhu, Y, Piner, R, Skipper, N, Ellerby, M, Ruoff, R, “Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity.” Carbon, 48 630–635 (2010)

    Article  CAS  Google Scholar 

  10. Navalon, S, Dhakshinamoorthy, A, Alvaro, M, Garcia, H, “Carbocatalysis by graphene-based materials.” Chem. Rev., 114 6179–6212 (2014)

    Article  CAS  Google Scholar 

  11. Qian, R, Yu, J, Wu, C, Zhai, X, Jiang, P, “Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity.” RSC Adv., 3 17373–17379 (2013)

    Article  CAS  Google Scholar 

  12. Ramezanzadeh, B, Haeri, Z, Ramezanzadeh, M, “A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2–GO); fabrication of SiO2–GO/epoxy composite coating with superior barrier and corrosion protection performance.” Chem. Eng. J., 303 511–528 (2016)

    Article  CAS  Google Scholar 

  13. Jiang, G, Lin, Z, Chen, C, Zhu, L, Chang, Q, Wang, N, “TiO2 nanoparticles assembled on grapheme oxide nanosheets with high photocatalytic activity for removal of pollutants.” Carbon, 49 2693–2701 (2011)

    Article  CAS  Google Scholar 

  14. Lei, P, Leroy, W, Dai, B, Zhu, JQ, Chen, XT, Han, JC, Depla, D, “Study on reactive sputtering of yttrium oxide: Process and thin film properties.” Surf. Coat. Technol., 276 39–46 (2015)

    Article  CAS  Google Scholar 

  15. Yu, Z, Di, H, Ma, Y, He, Y, Lianf, L, Lv, L, Ran, X, Pan, Y, Luo, Z, “Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings.” Surf. Coat. Technol., 276 471–478 (2015)

    Article  CAS  Google Scholar 

  16. Yu, Z, Di, H, Ma, Y, Lv, L, Pan, Y, Zhang, C, He, Y, “Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings.” Appl. Surf. Sci., 351 986–996 (2015)

    Article  CAS  Google Scholar 

  17. Williams, G, Kamat, PV, “Graphene–semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide.” Langmuir, 25 13869–13873 (2009)

    Article  CAS  Google Scholar 

  18. Wang, CX, Mao, HY, Wang, CX, Fu, SH, “Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent.” Ind. Eng. Chem. Res., 50 11930–11934 (2011)

    Article  CAS  Google Scholar 

  19. Shao, L, Quan, S, Liu, Y, Guo, Z, Wang, Z, “A novel gel–sol strategy to synthesize TiO2 nanorod combining reduced graphene oxide composites.” Mater. Lett., 107 307–310 (2013)

    Article  CAS  Google Scholar 

  20. Tatou, M, Genix, AC, Imaz, A, Forcada, J, Banc, A, Schweins, R, “Reinforcement and polymer mobility in silica-latex nanocomposites with controlled aggregation.” Macromolecules, 44 9029–9039 (2011)

    Article  CAS  Google Scholar 

  21. Emamgholizadeh, A, Omrani, A, Rostami, AA, Rostami, A, “Corrosion protection of steel 316 using coatings based on epoxy and poly p-phenylendiamine-SiO2 nanocomposite.” Chem. Eng. Commun., 202 1389–1396 (2015)

    Article  CAS  Google Scholar 

  22. Jiang, T, Kuila, T, Kim, NH, Ku, BC, Lee, JH, “Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites.” Compos. Sci. Technol., 79 115–125 (2013)

    Article  CAS  Google Scholar 

  23. Palraj, S, Selvaraj, M, Maruthan, K, Rajagopal, G, “Corrosion and wear resistance behavior of nano-silica epoxy composite coatings.” Prog. Org. Coat., 81 132–139 (2015)

    Article  CAS  Google Scholar 

  24. Bakhshandeh, E, Jannesari, A, Ranjbar, Z, Sobhani, S, Saeb, MR, “Anti-corrosion hybrid coatings based on epoxy-silica nano-composites: Toward relationship between the morphology and EIS data.” Prog. Org. Coat., 77 1169–1183 (2014)

    Article  CAS  Google Scholar 

  25. Courcot, E, Rebillat, F, Teyssandier, F, Louchet-Pouillerie, C, “Stability of rare earth oxides in a moist environment at elevated temperatures-experimental and thermodynamic studies: Part II: Comparison of the rare earth oxides.” J. Eur. Ceram. Soc., 30 1911–1917 (2010)

    Article  CAS  Google Scholar 

  26. de Rouffignac, P, Park, JS, Gordon, RG, “Atomic layer deposition of Y2O3 thin films from yttrium tris(N,N′-diisopropylacetamidinate) and water.” Chem. Mater., 17 4808–4814 (2005)

    Article  CAS  Google Scholar 

  27. Aghazadeh, M, Barmi, AAM, Shiri, HM, “Cathodic electrodeposition and characterization of nanostructured Y2O3 from chloride solution Part I: Effect of current density.” Russ. J. Electrochem., 49 344–353 (2013)

    Article  CAS  Google Scholar 

  28. Barve, SA, Mithal, N, Deo, MN, Biswas, A, Mishra, R, Kishore, R, Bhanage, BM, Gantayet, LM, Patil, DS, “Effects of precursor evaporation temperature on the properties of the yttrium oxide thin films deposited by microwave electron cyclotron resonance plasma assisted metal organic chemical vapor deposition.” Thin Solid Films, 519 3011–3020 (2011)

    Article  CAS  Google Scholar 

  29. Di, H, Yu, Z, Ma, Y, Zhang, C, Li, F, Lv, L, Pan, Y, Shi, H, He, Y, “Corrosion-resistant hybrid coatings based on graphene oxide-zirconia dioxide/epoxy system.” J. Taiwan Inst. Chem. Engrs., 67 511–520 (2016)

    Article  CAS  Google Scholar 

  30. Marks, JG, Demelfi, T, Mccarthy, MA, Witte, EJ, Castagnoli, N, Epstein, WL, Aber, RC, “Dermatitis from cashew nuts.” J. Am. Acad. Dermatol., 10 627–631 (1984)

    Article  Google Scholar 

  31. Li, F, Liu, Y, Qu, CB, Xiao, HM, Hua, Y, Sui, GX, Fu, SY, “Enhanced mechanical properties of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating.” Polymer, 59 155–165 (2015)

    Article  CAS  Google Scholar 

  32. Chiong, SJ, Goh, PS, Ismail, AF, “Novel hydrophobic PVDF/APTES-GO nanocomposite for natural gas pipelines coating.” J. Nat. Gas Sci. Eng., 42 190–202 (2017)

    Article  CAS  Google Scholar 

  33. Haeri, SZ, Ramezanzadeh, B, Asghari, M, “A novel fabrication of a high performance SiO2-graphene oxide (GO) nanohybrids: Characterization of thermal properties of epoxy nanocomposites filled with SiO2–GO nanohybrids.” J. Colloid Interface Sci., 493 111–122 (2017)

    Article  CAS  Google Scholar 

  34. Ahmadi-Moghadam, B, Sharafimasooleh, M, Shadlou, S, Taheri, F, “Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites.” Mater. Des., 66 142–149 (2015)

    Article  CAS  Google Scholar 

  35. Wu, YY, He, D, Zhang, H, Li, S, Liu, XP, Wang, SM, Jiang, LJ, “Preparation of yttrium oxide coating by MOCVD as tritium permeation barrier.” Fusion Eng. Des., 90 105–109 (2015)

    Article  CAS  Google Scholar 

  36. He, F, Fan, J, Ma, D, Zhang, L, Leung, C, Chan, HL, “The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding.” Carbon, 48 3139–3144 (2010)

    Article  CAS  Google Scholar 

  37. Pourhashem, S, Vaezi, MR, Rashidi, A, “Investigating the effect of SiO2-graphene oxide hybrid as inorganic nanofiller on corrosion protection properties of epoxy coatings.” Surf. Coat. Technol., 311 282–294 (2017)

    Article  CAS  Google Scholar 

  38. Yang, H, Li, F, Shan, C, Han, D, Zhang, Q, Niu, L, Ivaska, A, “Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement.” J. Mater. Chem., 19 4632–4638 (2009)

    Article  CAS  Google Scholar 

  39. Zhang, WL, Choi, HJ, “Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics.” Langmuir, 28 7055–7062 (2012)

    Article  CAS  Google Scholar 

  40. Kumar, M, Gholamvand, Z, Morrissey, A, Nolan, K, Ulbricht, M, Lawler, J, “Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO–TiO2 nanocomposite and polysulfone for humic acid removal.” J. Membr. Sci., 506 38–49 (2016)

    Article  CAS  Google Scholar 

  41. Sato, S, Ido, R, Ose, T, Takahashi, Y, Kanehashi, S, Ishimura, T, Honda, T, Miyakoshi, T, Nagai, K, “Transformation of a Kurome natural lacquer film from glassy to rubbery polymer by the presence of moisture.” Prog. Org. Coat., 104 43–49 (2017)

    Article  CAS  Google Scholar 

  42. Zhu, ZY, Zhou, F, Zhan, S, Tian, Y, He, QC, “Study on the bactericidal performance of graphene/TiO2 composite photocatalyst in the coating of PEVE.” Appl. Surf. Sci., 430 116–124 (2018)

    Article  CAS  Google Scholar 

  43. Zhu, JQ, Zhu, YK, Shen, WX, Wang, YJ, Han, JC, Tian, G, Lei, P, Dai, B, “Growth and characterization of yttrium oxide films by reactive magnetron sputtering.” Thin Solid Films, 519 4894–4898 (2011)

    Article  CAS  Google Scholar 

  44. Zhi, MY, Huang, WX, Shi, QW, Ran, K, “Improving water dispersibility of non-covalent functionalized reduced graphene oxide with L-tryptophan via cleaning oxidative debris.” J. Mater. Sci. Mater. Electron., 7 7361–7368 (2016)

    Article  CAS  Google Scholar 

  45. Haeri, SZ, Asghari, M, Ramezanzadeh, B, “Enhancement of the mechanical properties of an epoxy composite through inclusion of graphene oxide nanosheets functionalized with silica nanoparticles through one and two steps sol-gel routes.” Prog. Org. Coat., 111 1–12 (2017)

    Article  CAS  Google Scholar 

  46. Tzeng, P, Stevens, B, Devlaming, I, Grunlan, JC, “Polymer-graphene oxide quadlayer thin-film assemblies with improved gas barrier.” Langmuir, 21 5919–5927 (2015)

    Article  CAS  Google Scholar 

  47. Kim, H, Miura, Y, Macosko, CW, “Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity.” Chem. Mater., 22 3441–3450 (2010)

    Article  CAS  Google Scholar 

  48. Chen, J, Yao, B, Li, C, Shi, GQ, “An improved Hummers method for eco-friendly synthesis of graphene oxide.” Carbon, 64 225–229 (2013)

    Article  CAS  Google Scholar 

  49. Singhbabu, YN, Sivakumar, B, Singh, JK, Bapari, H, Pramanick, AK, Sahu, RK, “Efficient anti-corrosive coating of colled-rolled steel in a seawater environment using an oil-based graphene oxide ink.” Nanoscale, 7 8035–8047 (2015)

    Article  CAS  Google Scholar 

  50. Mohammadi, S, Taromi, FA, Shariatpanahi, H, Neshati, J, Hemmati, M, “Electrochemical and anticorrosion behavior of functionalized graphite nanoplatelets epoxy coating.” J. Ind. Eng. Chem., 20 4124–4139 (2014)

    Article  CAS  Google Scholar 

  51. Yu, YH, Lin, YY, Lin, CH, Chan, CC, Huang, YC, “High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties.” Polym. Chem., 5 535–550 (2014)

    Article  CAS  Google Scholar 

  52. Weng, CJ, Chang, CH, Peng, CW, Chen, SW, Yeh, JM, Hsu, CL, “Advanced anticorrosive coatings prepared from the mimicked Xanthosoma sagittifolium-leaf-like electroactive epoxy with synergistic effects of superhydrophobicity and redox catalytic capability.” Chem. Mater., 23 2075–2083 (2011)

    Article  CAS  Google Scholar 

  53. Liu, JG, Gong, GP, Yan, CW, “EIS study of corrosion behaviour of organic coating/dacromet composite systems.” Electrochim. Acta, 50 3320–3332 (2005)

    Article  CAS  Google Scholar 

  54. Shreepathi, S, Naik, SM, Vattipalli, MR, “Water transportation through organic coatings: Correlation between electrochemical impedance measurements, gravimetry and water vapor permeability.” J. Coat. Technol. Res., 9 411–422 (2012)

    Article  CAS  Google Scholar 

  55. Behzadnasab, M, Mirabedini, SM, Kabiri, K, Jamali, S, “Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution.” Corros. Sci., 53 89–98 (2011)

    Article  CAS  Google Scholar 

  56. Zhu, CF, Xie, R, Xue, JH, Song, LL, “Studies of the impedance models and water transport behaviors of cathodically polarized coating.” Electrochim. Acta, 56 5828–5835 (2011)

    Article  CAS  Google Scholar 

  57. Zhu, K, Li, XR, Wang, HH, Li, JY, Fei, GQ, “Electrochemical and anti-corrosion behaviors of water dispersible graphene/acrylic modified alkyd resin latex composites coated carbon steel.” J. Appl. Polym. Sci., 134 1–12 (2017)

    Article  Google Scholar 

  58. Ji, WG, Hu, JM, Liu, L, Zhang, JQ, Cao, CN, “Water uptake of epoxy coatings modified with γ-APS silane monomer.” Prog. Org. Coat., 57 439–443 (2006)

    Article  CAS  Google Scholar 

  59. Ramezanzadeh, B, Ahmadi, A, Mahdavian, M, “Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets.” Corros. Sci., 109 182–205 (2016)

    Article  CAS  Google Scholar 

  60. Sathiyanarayanan, S, Azim, SS, Venkatachari, G, “A new corrosion protection coating with polyaniline-TiO2 composite for steel.” Electrochim. Acta, 52 2068–2074 (2007)

    Article  CAS  Google Scholar 

  61. Hsu, CH, Mansfeld, F, “Concerning the conversion of the constant phase element parameter Y0 into a capacitance.” Corrosion, 57 747–748 (2001)

    Article  CAS  Google Scholar 

  62. Dang, DN, Peraudeau, B, Cohendoz, S, Mallarino, S, Feaugas, X, Touzain, S, “Effect of mechanical stresses on epoxy coating ageing approached by electrochemical impedance spectroscopy measurements.” Electrochim. Acta, 124 80–89 (2014)

    Article  CAS  Google Scholar 

  63. Bellucci, F, Nicodemo, L, “Water transport in organic coatings.” Corros. Sci., 49 235–247 (1993)

    Article  CAS  Google Scholar 

  64. Jiang, MY, Wu, LK, Hu, JM, Zhang, JQ, “Silane-incorporated epoxy coatings on aluminum alloy (AA2024). Part 1: Improved corrosion performance.” Corros. Sci., 92 118–126 (2015)

    Article  CAS  Google Scholar 

  65. Pahnke, J, Rühe, J, “Attachment of polymer films to aluminium surfaces by photochemically active monolayers of phosphonic acids.” Macromol. Rapid Commun., 25 1396–1401 (2004)

    Article  CAS  Google Scholar 

  66. Zhao, ZH, Guo, L, Feng, L, Lu, H, Xu, Y, Wang, JN, Xiang, B, Zou, XF, “Polydopamine functionalized graphene oxide nanocomposites reinforced the corrosion protection and adhesion properties of waterborne polyurethane coatings.” Eur. Polym. J., 120 109249 (2019)

    Article  CAS  Google Scholar 

  67. Bahlakeh, G, “A detailed molecular dynamics simulation and experimental investigation on the interfacial bonding mechanism of an epoxy adhesive on carbon steel sheets decorated with a novel Cerium−Lanthanum nanofilm.” ACS Appl. Mater. Interfaces, 9 17536–17551 (2017)

    Article  CAS  Google Scholar 

  68. Ramezanzadeh, B, Kardar, P, Bahlakeh, G, Hayatgheib, Y, Mahdavian, M, “Fabrication of a highly tunable graphene oxide composite through layer-by-layer assembly of highly crystalline polyaniline nanofibers and green corrosion inhibitors: Complementary experimental and first-principles quantum-mechanics modeling approaches.” J. Phys. Chem. C, 121 20433–20450 (2017)

    Article  CAS  Google Scholar 

  69. Bahlakeh, G, Ghaffari, M, Reza Saeb, M, Ramezanzadeh, B, De Proft, F, Terryn, H, “A close-up of the effect of iron oxide type on the interfacial interaction between epoxy and carbon steel: Combined molecular dynamics simulations and quantum mechanics.” J. Phys. Chem. C, 120 11014–11026 (2016)

    Article  CAS  Google Scholar 

  70. Ramezanzadeha, B, Bahlakehb, G, Mohamadzadeh Moghadamc, MH, Miraftaba, R, “Impact of size-controlled p-phenylenediamine (PPDA)-functionalized graphene oxide nanosheets on the GO-PPDA/epoxy anti-corrosion, interfacial interactions and mechanical properties enhancement: Experimental and quantum mechanics investigations.” Chem. Eng. J., 335 737–755 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Key R&D Program of China (Grant Nos. 2017YFD0600705 and 2016YFD0600806).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haitang Wu or Xiaohua Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, W., Wu, H. et al. Corrosion-resistant composite coatings based on a graphene oxide–metal oxide/urushiol formaldehyde polymer system. J Coat Technol Res 18, 1209–1225 (2021). https://doi.org/10.1007/s11998-021-00480-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00480-2

Keywords

Navigation