Skip to main content
Log in

Manufacturing and characterization of polypropylene/boric acid composite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This experimental study is conducted to investigate the effects of boric acid additive into polypropylene in terms of microstructure formation and thermal properties. Boric acid granules are added into pure polypropylene at three mass rates of 0.5, 1.5, and 2.5% which are notated as PP/BA-0.5, PP/BA-1.5, and PP/BA-2.5, respectively. The pure polypropylene material (pure PP) and boric acid reinforced polypropylene composite materials (PP/BA) are manufactured in an injection molding machine. The microstructure of composite materials is examined with an SEM (scanning electron microscope) device. Thermal analyses are conducted by using a TGA (thermogravimetric analyzer) device. In addition, thermal conductivities of composite materials are measured between 10 and 50 °C temperatures. SEM images show that boric acid at 0.5% additive rate forms a homogeneous composite by uniformly spreading the polymer chains, while boric acid at high additive rates of 1.5% and 2.5% becomes agglomerated within the polymer. TGA analyses show that the initial evaluation degradation temperature (Ti) tends to decrease with the addition of boric acid. Thermal conductivity for all examined materials almost linearly increases with temperature at a slope of about 0.0004 [(W m−1 K−1)/K]. Thermal conductivity is reversely proportional to the boric acid additive rate. The thermal conductivity for 2.5% boric acid added polypropylene is about 5% less than pure polypropylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang S, Cao XY, Ma YM et al (2011) The effects of particle size and content on the thermal conductivity and mechanical properties of Al 2O 3/high density polyethylene (HDPE) composites. Express Polym Lett 5:581–590. https://doi.org/10.3144/expresspolymlett.2011.57

    Article  CAS  Google Scholar 

  2. Zhou W, Qi S, An Q et al (2007) Thermal conductivity of boron nitride reinforced polyethylene composites. Mater Res Bull 42:1863–1873. https://doi.org/10.1016/j.materresbull.2006.11.047

    Article  CAS  Google Scholar 

  3. Li S, Qi S, Liu N, Cao P (2011) Study on thermal conductive BN/novolac resin composites. Thermochim Acta 523:111–115. https://doi.org/10.1016/j.tca.2011.05.010

    Article  CAS  Google Scholar 

  4. Zhou W, Qi S, Li H, Shao S (2007) Study on insulating thermal conductive BN/HDPE composites. Thermochim Acta 452:36–42. https://doi.org/10.1016/j.tca.2006.10.018

    Article  CAS  Google Scholar 

  5. Kumlutaş D, Tavman IH, Turhan Çoban M et al (2012) The effect of Al2O3 doped multi-walled carbon nanotubes on the thermal conductivity of Al2O3/epoxy terminated poly(dimethylsiloxane) composites. Compos Part A Appl Sci Manuf 43:36–42. https://doi.org/10.1016/j.compositesa.2009.02.024

    Article  CAS  Google Scholar 

  6. Liang JZ, Qiu YL (2015) Thermal conductivity of graphite-filled LDPE composites. Polym Bull 72:1723–1734. https://doi.org/10.1007/s00289-015-1366-8

    Article  CAS  Google Scholar 

  7. Kumlutas D, Tavman IH (2006) A numerical and experimental study on thermal conductivity of particle filled polymer composites. J Thermoplast Compos Mater 19:441–455. https://doi.org/10.1177/0892705706062203

    Article  CAS  Google Scholar 

  8. Krupa I, Boudenne A, Ibos L (2007) Thermophysical properties of polyethylene filled with metal coated polyamide particles. Eur Polym J 43:2443–2452. https://doi.org/10.1016/j.eurpolymj.2007.03.032

    Article  CAS  Google Scholar 

  9. Sathishkumar TP, Satheeshkumar S, Naveen J (2014) Glass fiber-reinforced polymer composites-a review. J Reinf Plast Compos 33:1258–1275. https://doi.org/10.1177/0731684414530790

    Article  CAS  Google Scholar 

  10. Weidenfeller B, Höfer M, Schilling FR (2004) Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos Part A Appl Sci Manuf 35:423–429. https://doi.org/10.1016/j.compositesa.2003.11.005

    Article  CAS  Google Scholar 

  11. Li M, Wan Y, Gao Z et al (2013) Preparation and properties of polyamide 6 thermal conductive composites reinforced with fibers. Mater Des 51:257–261. https://doi.org/10.1016/j.matdes.2013.03.076

    Article  CAS  Google Scholar 

  12. Wang M, Kang Q, Pan N (2009) Thermal conductivity enhancement of carbon fiber composites. Appl Therm Eng 29:418–421. https://doi.org/10.1016/j.applthermaleng.2008.03.004

    Article  CAS  Google Scholar 

  13. Naficy S, Garmabi H (2007) Study of the effective parameters on mechanical and electrical properties of carbon black filled PP/PA6 microfibrillar composites. Compos Sci Technol 67:3233–3241. https://doi.org/10.1016/j.compscitech.2007.04.001

    Article  CAS  Google Scholar 

  14. Sun Q, Yuan Y, Zhang H et al (2017) Thermal properties of polyethylene glycol/carbon microsphere composite as a novel phase change material. J Therm Anal Calorim 130:1741–1749. https://doi.org/10.1007/s10973-017-6535-6

    Article  CAS  Google Scholar 

  15. Liao CZ, Tjong SC (2011) Effects of carbon nanofibers on the fracture, mechanical, and thermal properties of PP/SEBS- g -MA blends. Polym Eng Sci 51(5):948–58

    Article  CAS  Google Scholar 

  16. Kim H, Abdala AA, MacOsko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  17. Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213:1060–1077

    Article  CAS  Google Scholar 

  18. Saheb DN, Jog JP (1999) Natural fiber polymer composites: A review. Adv Polym Technol 18:351–363. https://doi.org/10.1002/(SICI)1098-2329(199924)18:4%3c351::AID-ADV6%3e3.0.CO;2-X

    Article  CAS  Google Scholar 

  19. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM. https://doi.org/10.1007/s11837-006-0234-2

    Article  Google Scholar 

  20. Tekce HS, Kumlutas D, Tavman IH (2007) Effect of particle shape on thermal conductivity of copper reinforced polymer composites. J Reinf Plast Compos 26:113–121. https://doi.org/10.1177/0731684407072522

    Article  CAS  Google Scholar 

  21. Cioffi N, Torsi L, Ditaranto N et al (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262. https://doi.org/10.1021/cm0505244

    Article  CAS  Google Scholar 

  22. Cheewawuttipong W, Fuoka D, Tanoue S et al (2013) Thermal and mechanical properties of polypropylene/boron nitride composites. Energy Procedia 34:808–817. https://doi.org/10.1016/j.egypro.2013.06.817

    Article  CAS  Google Scholar 

  23. Visakh PM, Nazarenko OB, Amelkovich YA, Melnikova TV (2015) Thermal properties of epoxy composites filled with boric acid. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/81/1/012095

    Article  Google Scholar 

  24. Nazarenko OB, Sechin AI, Melnikova TV, Visakh PM (2018) Effect of boric acid on thermal behavior of copper nanopowder/epoxy composites. J Therm Anal Calorim 131:567–572. https://doi.org/10.1007/s10973-017-6826-y

    Article  CAS  Google Scholar 

  25. Donmez Cavdar A, Mengeloʇlu F, Karakus K (2015) Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Meas J Int Meas Confed 60:6–12. https://doi.org/10.1016/j.measurement.2014.09.078

    Article  Google Scholar 

  26. Zheng W, Lu X, Wong SC (2004) Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci 91:2781–2788. https://doi.org/10.1002/app.13460

    Article  CAS  Google Scholar 

  27. Tejyan S, Baliyan NK, Patel VK et al (2020) Polymer green composites reinforced with natural fibers: a comparative study. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.10.971

    Article  Google Scholar 

  28. Vakili MH, Ebadi-Dehaghani H, Haghshenas-Fard M (2011) Crystallization and thermal conductivity of CaCO 3 nanoparticle filled polypropylene. J Macromol Sci Part B Phys 50:1637–1645. https://doi.org/10.1080/00222348.2010.543033

    Article  Google Scholar 

  29. Junwei Gu, Zhang Q, Dang J, Changjie Yin SC (2010) Preparation and Properties of Polystyrene/SiCw/SiCp Thermal Conductivity Composites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  Google Scholar 

  30. Lee GW, Park M, Kim J et al (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos Part A Appl Sci Manuf 37:727–734. https://doi.org/10.1016/j.compositesa.2005.07.006

    Article  CAS  Google Scholar 

  31. Mamunya YP, Davydenko VV, Pissis P, Lebedev EV (2002) Electrical and thermal conductivity of polymers filled with metal powders. Eur Polym J 38:1887–1897. https://doi.org/10.1016/S0014-3057(02)00064-2

    Article  CAS  Google Scholar 

  32. Tavman IH (1996) Thermal and mechanical properties of aluminum powder-filled high-density polyethylene composites. J Appl Polym Sci 62:2161–2167. https://doi.org/10.1002/(sici)1097-4628(19961219)62:12%3c2161::aid-app19%3e3.3.co;2-a

    Article  CAS  Google Scholar 

  33. Shen MX, Cui YX, He J, Zhang YM (2011) Thermal conductivity model of filled polymer composites. Int J Miner Metall Mater 18:623–631. https://doi.org/10.1007/s12613-011-0487-9

    Article  CAS  Google Scholar 

  34. Albach B, Vianna dos Santos PH, da Silveira RD, Barbosa RV (2019) An evaluation of modified Kaolinite surface on the crystalline and mechanical behavior of polypropylene. Polym Test 75:237–245. https://doi.org/10.1016/j.polymertesting.2018.12.012

    Article  CAS  Google Scholar 

  35. Kalantari B, Mohaddes Mojtahedi MR, Sharif F, Semnani Rahbar R (2015) Flow-induced crystallization of polypropylene in the presence of graphene nanoplatelets and relevant mechanical properties in nanocompsoite fibres. Compos Part A Appl Sci Manuf 76:203–214. https://doi.org/10.1016/j.compositesa.2015.05.028

    Article  CAS  Google Scholar 

  36. Kai W, He Y, Inoue Y (2005) Fast crystallization of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with talc and boron nitride as nucleating agents. Polym Int 54:780–789. https://doi.org/10.1002/pi.1758

    Article  CAS  Google Scholar 

  37. Sahin T (2011) Mechanical and thermal properties of colemanite filled polypropylene. KGK, Kaut Gummi Kunstst 64:16–21

    CAS  Google Scholar 

  38. Luo JH, Han SH, Wang J et al (2020) Effects of boric acid ester modified magnesium borate whisker on the mechanical properties and crystallization kinetics of polypropylene composites. Materials (Basel). 13:1698

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Scientific Research Office of the Kırıkkale University. Project number is 2013/44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zühtü Onur Pehlivanlı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pehlivanlı, Z.O. Manufacturing and characterization of polypropylene/boric acid composite. Polym. Bull. 78, 4033–4046 (2021). https://doi.org/10.1007/s00289-021-03728-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03728-4

Keywords

Navigation