Skip to main content
Log in

Cross-tolerance and transcriptional shifts underlying abiotic stress in the seabird tick, Ixodes uriae

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The seabird tick, Ixodes uriae, is a significant ectoparasite of penguins in Antarctica and of other seabirds, mainly in coastal, polar regions of the Northern and Southern hemispheres, but the tick’s distribution extends into more temperate regions as well. The expansive range of this tick suggests that it is exposed to a wide range of abiotic stresses, including dehydration, heat, and cold. To better understand how I. uriae responds to stress exposure, we examined cross-tolerance between dehydration and thermal stress based on survival analyses and used RNA-seq to monitor transcriptional responses to cold, heat, and dehydration. Slight dehydration improved cold, but not heat tolerance, whereas severe dehydration reduced subsequent thermal tolerance. Dehydration exposure prompted transcript-level shifts underlying protein metabolism, recovery from stress, and processes allowing subsequent rehydration by water vapor uptake. Both cold and heat stress yielded expression changes involved in cuticle modification. One gene increased in expression (enzyme P450) and one decreased (transcription factor Hairy) in response to all three stresses. This study provides the groundwork for assessing stress tolerance in this bipolar ectoparasite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All datasets used for RNA-seq analyses are available under the NCBI Bioproject PRJNA659796.

References

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA (2000) Gene ontology: tool for the unification of biology. Nature Gen 25:25–29

    CAS  Google Scholar 

  • Azad P, Zhou D, Russo E, Haddad GG (2009) Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster. PLoS One 4:e5371

    PubMed  PubMed Central  Google Scholar 

  • Baggerly KA, Deng L, Morris JS, Aldaz CM (2003) Differential expression in SAGE: accounting for normal between-library variation. Bioinformatics 19:1477–1483

    CAS  PubMed  Google Scholar 

  • Barbosa A, Benzal J, Vidal V et al (2011) Seabird ticks (Ixodes uriae) distribution along the Antarctic Peninsula. Pol Biol 34:1621–1624

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc: Series B 57:289–300

    Google Scholar 

  • Benoit JB (2010) Water management by dormant insects: comparisons between dehydration resistance during summer aestivation and winter diapause. Prog Mol Subcell Biol 49:209–229

    CAS  PubMed  Google Scholar 

  • Benoit JB, Denlinger DL (2010) Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods. J Insect Physiol 56:1366–1376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benoit JB, Denlinger DL (2017) Bugs battle stress from hot blood. eLife 6:e33035

    Article  PubMed  PubMed Central  Google Scholar 

  • Benoit JB, Lazzari CR, Denlinger DL, Lahondère C (2019) Thermoprotective adaptations are critical for arthropods feeding on warm-blooded hosts. Curr Opin Insect Sci 34:7–11

    PubMed  Google Scholar 

  • Benoit JB, Lopez-Martinez G, Elnitsky MA et al (2009a) Dehydration-induced cross tolerance of Belgica antarctica larvae to cold and heat is facilitated by trehalose accumulation. Comp Biochem Physiol A 152:518–523

    Google Scholar 

  • Benoit JB, Lopez-Martinez G, Teets NM, Phillips SA, Denlinger DL (2009b) Responses of the bed bug, Cimex lectularius, to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins. Med Vet Entomology 23:418–425

    CAS  Google Scholar 

  • Benoit JB, Yoder JA, Lopez-Martinez G et al (2007) Habitat requirements of the seabird tick, Ixodes uriae (Acari: Ixodidae), from the Antarctic Peninsula in relation to water balance characteristics of eggs, nonfed and engorged stages. J Comp Physiol B 177:205–215

    CAS  PubMed  Google Scholar 

  • Benoit JB, Oyen K, Finch G, Gantz JD, Wendeln K, Arya T, Lee RE Jr (2021) Cold hardening improves larval tick questing under low temperatures at the expense of longevity. Comp Biochem Physiol Part A: Mol Integ Physiol 257:110966

    CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    CAS  PubMed  Google Scholar 

  • Crooks E, Randolph SE (2006) Walking by Ixodes ricinus ticks: intrinsic and extrinsic factors determine the attraction of moisture or host odour. J Exp Biol 209:2138–2142

    PubMed  Google Scholar 

  • Dietrich M, Kempf BT, McCoy K (2014) Tracing the colonization and diversification of the worldwide seabird ectoparasite Ixodes uriae. Mol Ecol 23:3292–3305

    PubMed  Google Scholar 

  • Dunning LT, Dennis AB, Park D et al (2013) Identification of cold-responsive genes in a New Zealand alpine stick insect using RNA-Seq. Comp Biochem Physiol Part D 8:24–31

    CAS  Google Scholar 

  • Dunning LT, Dennis AB, Sinclair BJ et al (2014) Divergent transcriptional responses to low temperature among populations of alpine and lowland species of New Zealand stick insects (Micrarchus). Mol Ecol 23:2712–2726

    CAS  PubMed  Google Scholar 

  • Eveleigh ES, Threlfall W (1975) The biology of Ixodes (Ceratixodes) uriae White, 1852 in Newfoundland. Acarologia 16:621–635

    CAS  PubMed  Google Scholar 

  • Feyereisen R (2012) Insect CYP genes and P450 enzymes. In: Gilbert LI (ed) Insect molecular biology and biochemistry. Academic Press, Cambridge

    Google Scholar 

  • Feyereisen R (1999) Insect P450 enzymes. Ann Rev Entomol 44:507–533

    CAS  Google Scholar 

  • Feyereisen R (2020) Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Mol Phyl Evol 143:106695

    CAS  Google Scholar 

  • Fieler AM, Rosendale AJ, Farrow DW, Dunlevy MD, Davies B, Oyen K, Xiao Y, Benoit JB (2021) Larval thermal characteristics of multiple ixodid ticks. Comp Biochem Physiol Part A: Mol Integ Physiol 257:110939

    CAS  Google Scholar 

  • Findsen A, Andersen JL, Calderon S, Overgaard J (2013) Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory locust, Locusta migratoria. J Exp Biol 216:1630–1637

    PubMed  Google Scholar 

  • Götz S, García-Gómez JM, Terol J et al (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gulia-Nuss M, Nuss AB, Meyer JM et al (2016) Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun 7:10507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hallas R, Schiffer M, Hoffmann AA (2002) Clinal variation in Drosophila serrata for stress resistance and body size. Genetics Res 79:141–148

    Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    CAS  PubMed  Google Scholar 

  • Hagan RW, Didion EM, Rosselot AE et al (2018) Dehydration prompts increased activity and blood feeding by mosquitoes. Sci Rep 8:6804

    PubMed  PubMed Central  Google Scholar 

  • Hengherr S, Worland MR, Reuner A et al (2009) High-temperature tolerance in anhydrobiotic tardigrades is limited by glass transition. Physiol Biochem Zool 82:749–755

    CAS  PubMed  Google Scholar 

  • Herrmann C, Gern L (2013) Survival of Ixodes ricinus (Acari: Ixodidae) nymphs under cold conditions is negatively influenced by frequent temperature variations. Ticks Tick Borne Dis 4:445–451

    PubMed  Google Scholar 

  • Holmes CJ, Benoit JB (2019) Biological adaptations associated with dehydration in mosquitoes. Insects 10:375

    PubMed Central  Google Scholar 

  • Holmes CJ, Dobrotka CJ, Farrow DW et al (2018) Low and high thermal tolerance characteristics for unfed larvae of the winter tick Dermacentor albipictus (Acari: Ixodidae) with special reference to moose. Ticks Tick Borne Dis 9:25–30

    PubMed  Google Scholar 

  • Hoffmann AA, Anderson A, Hallas R (2002) Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol Lett 5:614–618

    Google Scholar 

  • Hoogstraal H, Eugene Mielcarek J (1954) Ixodes (Ceratixodes) uriae White, 1852, Parasitizing penguins and sea birds in the Falkland Islands (Ixodoidea, Ixodidae). J Parasit 40:232

    Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    CAS  Google Scholar 

  • Huang Y, Niu B, Gao Y et al (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RE, Baust JG (1987) Cold-hardiness in the Antarctic tick, Ixodes uriae. Physiol Zool 60:499–506

    Google Scholar 

  • Li A, Jiao X, Munier FL et al (2004) Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2. Am J Hum Genet 74:817–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay PJ, Kaufman WR (1986) Potentiation of salivary fluid secretion in ixodid ticks: a new receptor system for γ-aminobutyric acid. Can J Physiol Pharmacol 64:1119–1126

    CAS  PubMed  Google Scholar 

  • Liu G, Roy J, Johnson EA (2006) Identification and function of hypoxia-response genes in Drosophila melanogaster. Physiol Genomics 25:134–141

    PubMed  Google Scholar 

  • Lucien J, Reiffenstein R, Zbitnew G, Kaufman WR (1995) γ-aminobutyric acid (GABA) and other amino acids in tissues of the tick, Amblyomma hebraeum (Acari: Ixodidae) throughout the feeding and reproductive periods. Exp Appl Acarol 19:617–631

    CAS  Google Scholar 

  • MacMillan HA, Knee JM, Dennis AB et al (2016) Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Sci Rep 6:28999

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacMillan HA, Williams CM, Staples JF, Sinclair BJ (2012) Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proc Natl Acad Sci U S A 109:20750–20755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marteaux LED, Des Marteaux LE, McKinnon AH et al (2017) Effects of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues. BMC Genomics 8:357

    Google Scholar 

  • McCoy KD, Boulinier T, Tirard C, Michalakis Y (2001) Host specificity of a generalist parasite: genetic evidence of sympatric host races in the seabird tick Ixodes uriae. J Evol Biol 14:395–405

    Google Scholar 

  • McCoy KD, Tirard C, Michalakis Y (2003) Spatial genetic structure of the ectoparasite Ixodes uriae within breeding cliffs of its colonial seabird host. Heredity 91:422–429

    CAS  PubMed  Google Scholar 

  • Mi H, Muruganujan A, Ebert D et al (2019) PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47:D419–D426

    CAS  PubMed  Google Scholar 

  • Moreira HNS, Barcelos RM, Vidigal PMP et al (2017) A deep insight into the whole transcriptome of midguts, ovaries and salivary glands of the Amblyomma sculptum tick. Parasitol Int 66:64–73

    CAS  PubMed  Google Scholar 

  • Muñoz-Leal S, González-Acuña D (2015) The tick Ixodes uriae (Acari: Ixodidae): Hosts, geographical distribution, and vector roles. Ticks Tick Borne Dis 6:843–868

    PubMed  Google Scholar 

  • Murray MD, Vestjens WJM (1967) Studies on the ectoparasites of seals and penguins. III. The distribution of the tick Ixodes uriae White and the flea Parapsyllus magellanicus heardi de Meillon on Macquarie Island. Aust J Zool 15:715

    Google Scholar 

  • Needham GR, Teel PD (1991) Off-host physiological ecology of ixodid ticks. Annu Rev Entomol 36:659–681

    CAS  PubMed  Google Scholar 

  • Nguyen TTA, Michaud D, Cloutier C (2009) A proteomic analysis of the aphid Macrosiphum euphorbiae under heat and radiation stress. Insect Biochem Mol Biol 39:20–30

    CAS  PubMed  Google Scholar 

  • Ogden NH, Lindsay LR (2016) Effects of climate and climate change on vectors and vector-borne diseases: ticks are different. Trends Parasitol 32:646–656

    PubMed  Google Scholar 

  • Overgaard J, Malmendal A, Sørensen JG et al (2007) Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melangaster. J Nsect Physiol 53:1218–1232

    CAS  Google Scholar 

  • Overgaard J, Sørensen JG, Com E, Colinet H (2014) The rapid cold hardening response of Drosophila melanogaster: Complex regulation across different levels of biological organization. J Insect Physiol 62:46–53

    CAS  PubMed  Google Scholar 

  • Overgaard J, Sørensen JG, Petersen SO et al (2005) Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. J Insect Physiol 51:1173–1182

    CAS  PubMed  Google Scholar 

  • Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23:1061–1067

    CAS  PubMed  Google Scholar 

  • Quan P-Q, Li M-Z, Wang G-R et al (2020) Comparative transcriptome analysis of the rice leaf folder (Cnaphalocrocis medinalis) to heat acclimation. BMC Genomics 21:450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Randolph SE, Storey K (1999) Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol 36:741–748

    CAS  PubMed  Google Scholar 

  • Reimand J, Arak T, Adler P et al (2016) g:Profiler—a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res 44:W83–W89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michaud MR, Benoit JB, Lopez-Martinez G et al (2008) Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J Insect Physiol 54:645–655

    Google Scholar 

  • Rosendale AJ, Dunlevy ME, Fieler AM et al (2017) Dehydration and starvation yield energetic consequences that affect survival of the American dog tick. J Insect Physiol 101:39–46

    CAS  PubMed  Google Scholar 

  • Rosendale AJ, Dunlevy ME, McCue MD, Benoit JB (2019) Progressive behavioural, physiological and transcriptomic shifts over the course of prolonged starvation in ticks. Mol Ecol 28:49–65

    CAS  PubMed  Google Scholar 

  • Rosendale AJ, Farrow DW, Dunlevy ME et al (2016a) Cold hardiness and influences of hibernaculum conditions on overwintering survival of American dog tick larvae. Ticks Tick Borne Dis 7:1155–1161

    PubMed  Google Scholar 

  • Rosendale AJ, Leonard R, Patterson I, Benoit JB (2021) Dual metabolome and transcriptome profiling reveals betaine as a critical factor in tick rapid cold hardening. J Exp Biol Under revision

  • Rosendale AJ, Romick-Rosendale LE, Watanabe M et al (2016b) Mechanistic underpinnings of dehydration stress in the American dog tick revealed through RNA-Seq and metabolomics. J Exp Biol 219:1808–1819

    PubMed  Google Scholar 

  • Rudolph D, Knülle W (1974) Site and mechanism of water vapour uptake from the atmosphere in ixodid ticks. Nature 249:84–85

    CAS  PubMed  Google Scholar 

  • Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Short NJ, Floyd RB, Norval RA, Sutherst RW (1989) Development rates, fecundity and survival of developmental stages of the ticks Rhipicephalus appendiculatus, Boophilus decoloratus and B. microplus under field conditions in Zimbabwe. Exp Appl Acarol 6:123–141

    CAS  PubMed  Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P et al (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

    PubMed  Google Scholar 

  • Sinclair BJ, Ferguson LV, Salehipour-shirazi G, MacMillan HA (2013) Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integr Comp Biol 53:545–556

    PubMed  Google Scholar 

  • Sogame Y, Kikawada T (2017) Current findings on the molecular mechanisms underlying anhydrobiosis in Polypedilum vanderplanki. Cur Opin Insect Sci 19:16–21

    Google Scholar 

  • Sonenshine DE, Michael Roe R (2013) Biology of ticks. Oxford University Press

    Google Scholar 

  • Teets NM, Peyton JT, Colinet H, Renault D, Kelley JL, Kawarasaki Y, Lee RE, Denlinger DL (2012) Gene expression changes governing extreme dehydration tolerance in an Antarctic insect. Proc Nat Acad Sci 109:20744–20749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian CB, Li YY, Huang J et al (2020) Comparative transcriptome and proteome analysis of heat acclimation in predatory mite Neoseiulus barkeri. Front Physiol 11:426

    PubMed  PubMed Central  Google Scholar 

  • Vandyk JK, Bartholomew DM, Rowley WA, Platt KB (1996) Survival of Ixodes scapularis (Acari: Ixodidae) exposed to cold. J Med Entomol 33:6–10

    CAS  PubMed  Google Scholar 

  • Wang T, Yang X, Jia Q et al (2017) Cold tolerance and biochemical response of unfed Dermacentor silvarum ticks to low temperature. Ticks Tick Borne Dis 8:757–763

    PubMed  Google Scholar 

  • Wilson N (1970) New distributional records of ticks from Southeast Asia and the Pacific (Metastigmata : Argasidae, Ixodidae). Orient Insects 4:37–46

    Google Scholar 

  • Yoder JA, Benoit JB, Denlinger DL, Rivers DB (2006) Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. J Insect Physiol 52:202–214

    CAS  PubMed  Google Scholar 

  • Yoder JA, Hedges BZ, Tank JL, Benoit JB (2009) Dermal gland secretion improves the heat tolerance of the brown dog tick, Rhipicephalus sanguineus, allowing for their prolonged exposure to host body temperature. J Therm Biol 34:256–265

    Google Scholar 

  • Yu Z, Jia Q, Wang T et al (2017) Gene expression profiling of the unfed nymphal Dermacentor silvaum (Acari: Ixodidae) in response to low temperature. Syst Appl Acarol 22:2178

    Google Scholar 

  • Yu Z-J, Lu Y-L, Yang X-L et al (2014) Cold hardiness and biochemical response to low temperature of the unfed bush tick Haemaphysalis longicornis (Acari: Ixodidae). Parasit Vect 7:346

    Google Scholar 

  • Yu Z, Pei T, Zhang M et al (2020) Differential transcriptome profiling of the diapause and cold-responsive genes in unfed adult Dermacentor silvarum Olenev (Acari: Ixodidae). Syst Appl Acarol 25:193–213

    Google Scholar 

  • Zhou D, Xue J, Lai JCK et al (2008) Mechanisms underlying hypoxia tolerance in Drosophila melanogaster: hairy as a metabolic switch. PLoS Genet 4:e1000221

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation grant DEB-1654417 (partially), United States Department of Agriculture 2018-67013-28495 (partially), and National Institutes of Health 1R01AI148551-01A1 (partially) to J.B.B. for computational support, National Science Foundation grant OPP-1341393 to D.L.D., and National Science Foundation grant OPP-1341385 to R.E.L. We thank the staff at Palmer Station, Antarctica for assistance in logistics and experiments. We appreciate Karen D. McCoy and Jingze Liu for serving as reviewers and providing helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

This study was designed and conceived by J.B.B and A.J.R. The manuscript was written by B.D. and J.B.B. RNA-seq studies were conducted by A.J.R., B. D., and J.B.B. Physiological studies were conducted by J.D.G and J.B.B. Samples were collected by J.D.G., J.B.B., R.E.L., and D.L.D. Figures were prepared by B.D. and J.B.B. All authors were responsible for editing the manuscript and have approved publication.

Corresponding author

Correspondence to Joshua B. Benoit.

Ethics declarations

Conflict of interest

We do not declare any conflict of interests.

Informed consent

Not applicable to current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

300_2021_2887_MOESM1_ESM.xlsx

Supplementary file1—Online Resource 1 - RNA-seq results for contigs with increased expression following dehydration exposure in Ixodes uriae. Expression values are in transcripts per million. RNA-seq datasets are available under the following NCBI Bioproject PRJNA659796. (XLSX 36 kb)

300_2021_2887_MOESM2_ESM.xlsx

Supplementary file2—Online Resource 2 - RNA-seq results for contigs with decreased expression following dehydration exposure in Ixodes uriae. Expression values are in transcripts per million. RNA-seq datasets are available under the following NCBI Bioproject PRJNA659796. (XLSX 47 kb)

300_2021_2887_MOESM3_ESM.xlsx

Supplementary file3—Online Resource 3 - RNA-seq results for contigs with increased expression following cold exposure in Ixodes uriae. Expression values are in transcripts per million. RNA-seq datasets are available under the following NCBI Bioproject PRJNA659796. (XLSX 15 kb)

300_2021_2887_MOESM4_ESM.xlsx

Supplementary file4—Online Resource 4 - RNA-seq results for contigs with decreased expression following cold exposure in Ixodes uriae. Expression values are in transcripts per million. RNA-seq datasets are available under the following NCBI Bioproject PRJNA659796. (XLSX 16 kb)

300_2021_2887_MOESM5_ESM.xlsx

Supplementary file5—Online Resource 5 - RNA-seq results for contigs with increased expression following heat exposure in Ixodes uriae. Expression values are in transcripts per million. RNA-seq datasets are available under the following NCBI Bioproject PRJNA659796. (XLSX 16 kb)

300_2021_2887_MOESM6_ESM.xlsx

Supplementary file6—Online Resource 6 - RNA-seq results for contigs with decreased expression following heat exposure in Ixodes uriae. Expression values are in transcripts per million. RNA-seq datasets are available under the following NCBI Bioproject PRJNA659796. (XLSX 31 kb)

300_2021_2887_MOESM7_ESM.xlsx

Supplementary file7—Online Resource 7 - Gene ontology categories enriched following cold, heat, and dehydration exposure in Ixodes uriae. (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, B., Rosendale, A.J., Gantz, J.D. et al. Cross-tolerance and transcriptional shifts underlying abiotic stress in the seabird tick, Ixodes uriae. Polar Biol 44, 1379–1389 (2021). https://doi.org/10.1007/s00300-021-02887-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-021-02887-4

Keywords

Navigation