Skip to main content
Log in

Utilization of green alga Ulva lactuca for sustainable production of meso-micro porous nano activated carbon for adsorption of Direct Red 23 dye from aquatic environment

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The production of macroalgae-derived adsorbent is of great importance to realize the idea of treating pollutants with invaluable renewable materials. Herein, a novel meso-micro porous nano-activated carbon was prepared from green alga Ulava lactuca in a facile way via chemical activation with zinc chloride. The resultant activated carbon possesses a significant specific surface area 1486.3 m2/g. The resulting activated carbon was characterized and investigated for the adsorption of Direct Red 23 (DR23) dye from an aqueous environment. Batch method was conducted to study the effects of different adsorption processes on the DR23 dye adsorption from water. Isotherms and kinetics models were investigated for the adsorption process of DR23 dye. It was found that the adsorption data were well fitted by Langmuir model showing a monolayer adsorption capacity 149.26 mg/g. Kinetic experiments revealed that the adsorptions of DR23 dye can be described with pseudo-second-order model showing a good correlation (R2 > 0.997). The prepared activated carbon from Ulava lactuca was exposed to a total of six regeneration experiments. The regeneration result proved that the fabricated activated carbon only loses 19% of its adsorption capacity after six cycles. These results clearly demonstrated the high ability of the obtained active carbon to absorb anionic dyes from the aqueous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

The datasets analyzed during the study are available from the corresponding author on request.

References

  1. Aramia M, Limaee NY, Mahmoodi NM, Tabrizi NS (2005) Removal of dyes from colored textile wastewater by orange peel adsorbent: equilibrium and kinetic studies. J Coll Interface Sci 288:371–376

    Article  Google Scholar 

  2. El Nemr A (ed) (2012) Textiles: types uses and production methods. Nova Science Publishers, Inc., Hauppauge New York, p 621 (Hard cover [ISBN: 978-1-62100-239-0], e-book [ISBN: 978-1-62100-284-0])

    Google Scholar 

  3. Qiao Y, Li Q, Chi H, Li M, Lv Y, Feng S (2018) Methyl blue adsorption properties and bacteriostatic activities of Mg-Al layer oxides via a facile preparation method. Appl Clay Sci 163:119–128

    Article  CAS  Google Scholar 

  4. Morão LG, Dilarri G, Corso CR (2017) An approach to textile dye removal using sawdust from Aspidosperma polyneuron. Inter J Environ Studies 74:75–85. https://doi.org/10.1080/00207233.2016.1236651

    Article  CAS  Google Scholar 

  5. Hayat H, Mahmood Q, Pervez A, Bhatti ZA, Baig SA (2015) Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Sep Purif Technol 154:149–153

    Article  CAS  Google Scholar 

  6. Wu X, Luo B, Chen M, Chen F (2020) Tunable surface charge of Fe, Mn substituted polyoxometalates/hydrotalcites for efficient removal of multiple dyes. Appl Surf Sci 509:145344. https://doi.org/10.1016/j.apsusc.2020.145344

    Article  CAS  Google Scholar 

  7. Al-Ghouti MA, Sweleh AO (2019) Optimizing textile dye removal by activated carbon prepared from olive stones. Environ Technol Innov 16:100488. https://doi.org/10.1016/j.eti.2019.100488

    Article  Google Scholar 

  8. Liu N, Wang H, Weng C-H, Hwang C-C (2018) Adsorption characteristics of Direct Red 23 azo dye onto powdered tourmaline. Arab J Chem 11:1281–1291. https://doi.org/10.1016/j.arabjc.2016.04.010

    Article  CAS  Google Scholar 

  9. El Nemr A, El Sadaawy MM, Khaled A, El Sikaily A (2014) Adsorption of the Anionic Dye Direct Red 23 onto new activated carbons developed from Cynara Cardunculus: kinetics equilibrium and thermodynamics. Blue Biotechnol J 3(1):121–142

    Google Scholar 

  10. Hassaan MA, Pantaleo AM, Tedone L, Elkatory M, El Nemr A (2020) Comparative study on different types of AOPs for decolorization of Direct Red 23 dye. Chem Eng Commun. https://doi.org/10.1080/00986445.2019.1705797 (In Press)

    Article  Google Scholar 

  11. Mahmoodi NM, Saffar-Dastgerdi MH, Hayati B (2020) Environmentally friendly novel covalently immobilized enzyme bionanocomposite: from synthesis to the destruction of pollutant. Compos B. https://doi.org/10.1016/j.compositesb.2019.107666

    Article  Google Scholar 

  12. Pang YL, Abdullah AZ (2013) Current status of textile industry wastewater management and research progress in Malaysia: a review. Clean: Soil, Air, Water 41:751–764

    CAS  Google Scholar 

  13. Han YH, Li H, Liu ML, Sang YM, Liang CZ, Chen JQ (2016) Purification treatment of dyes wastewater with a novel micro-electrolysis reactor. Sep Purif Technol 170:241–247

    Article  CAS  Google Scholar 

  14. Hassaan MA, El Nemr A, Madkour FF (2016) Application of ozonation and UV assisted ozonation for decolorization of direct yellow 50 in sea water. Pharm Chem J 3(2):131–138

    CAS  Google Scholar 

  15. Hassaan MA, El Nemr A, Madkour FF (2017) Advanced oxidation processes of mordant violet 40 dye in freshwater and seawater. Egypt J Aquat Res 43:1–9. https://doi.org/10.1016/j.ejar.2016.09.004

    Article  Google Scholar 

  16. El Nemr A, Hassaan MA, Madkour FF (2017) HPLC-MS/MS Mechanistic study of direct yellow 12 degradation using ultraviolet assisted ozone process. J Water Environ Nanotech 3(1):1–11

    Google Scholar 

  17. El Nemr A, Hassaan MA, Madkour FF (2018) Advanced oxidation process (AOP) for detoxification of acid red 17 dye solution and degradation mechanism. Environ Proc 5:95–113. https://doi.org/10.1007/s40710-018-0284-9

    Article  CAS  Google Scholar 

  18. Serag E, El Nemr A, El-Maghraby A (2017) Synthesis of highly effective novel graphene oxide-polyethylene glycol-polyvinyl alcohol nanocomposite hydrogel for copper removal. J Water Environ Nanotech 2(4):223–234

    CAS  Google Scholar 

  19. Eleryan A, El Nemr A, Mashaly M, Khaled A (2019) 6-Triethylenetetramine 6-deoxycellulose grafted with crotonaldehyde as adsorbent for Cr6+ removal from wastewater. Inter J Scient Eng Res 10(7):1199–1211

    Google Scholar 

  20. Eldeeb TM, El Nemr A, Khedr MH, El-Dek SI, Imam NG (2020) Novel, three-dimensionoal, chitosan-carbon nanotube–PVA nanocomposite hydrogel for removal of Cr6+ from water. Desalin Water Treat 184:163–177

    Article  CAS  Google Scholar 

  21. Helmy ET, El Nemr A, Mousa M, Arafa E, Eldafrawy S (2018) Photocatalytic degradation of organic dyes pollutants in the industrial textile wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2 and C, S co-doped TiO2 nanoparticles. J Water Environ Nanotech 3(2):116–127

    CAS  Google Scholar 

  22. Mousa MA, El Nemr A, Gomaa EA, Eldafrawy SM, Helmy ET (2018) Mangrove leaves aqueous extract mediated green synthesis of C-doped TiO2 nanoparticles and their ecotoxic effect on rotifers. Inter J Nano Mater Sci 7(1):16–30

    CAS  Google Scholar 

  23. El Nemr A, Helmy ET, Arafa E, Eldafrawy S, Mousa M (2019) Photocatalytic and biological activities of undoped and doped TiO2 prepared by Green method for water treatment. J Environ Chem Eng 7(5):103385

    Article  Google Scholar 

  24. Al-Ghouti MA, Da’ana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater 393:122383. https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  CAS  Google Scholar 

  25. Achmad A, Kassim J, Suan TK, Amat RC, Seey TL (2012) Equilibrium, kinetic and thermodynamic studies on the adsorption of direct dye onto a novel green adsorbent developed from Uncaria gambir extract. J Phys Sci 23(1):1–13

    CAS  Google Scholar 

  26. El Nemr A (2009) Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: kinetic and isotherm studies. J Hazard Mater 161:132–141

    Article  Google Scholar 

  27. Sayğılı H, Güzel F (2016) High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. J Cleaner Prod 113:995–1004. https://doi.org/10.1016/j.jclepro.2015.12.055

    Article  CAS  Google Scholar 

  28. El Nemr A (ed) (2012) Non-Conventional textile waste water treatment. Nova Science Publishers, Inc., Hauppauge New York, p 267

    Google Scholar 

  29. Shang Z, Hu Z, Huang L, Guo Z, Liu H, Zhang C (2020) Removal of amoxicillin from aqueous solution by zinc acetate modified activated carbon derived from reed. Powder Technol 36815:178–189. https://doi.org/10.1016/j.powtec.2020.04.055

    Article  CAS  Google Scholar 

  30. El-Sikaily A, El Nemr A, Khaled A, Abdelwehab O (2007) Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J Hazard Mater 148:216–228

    Article  CAS  Google Scholar 

  31. El Nemr A, Abdelwahab O, Khaled A, El Sikaily A (2006) Biosorption of Direct Yellow 12 from aqueous solution using green alga Ulva lactuca. Chem Ecol 22(4):253–266

    Article  Google Scholar 

  32. El-Sikaily A, El Nemr A, Khaled A (2011) Copper sorption onto dried red alga Pterocladia capillacea and its activated carbon. Chem Eng J 168:707–714

    Article  CAS  Google Scholar 

  33. El Nemr A, El Sikaily A, Khaled A, Abdelwahab O (2015) Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arab J Chem 8:105–117. https://doi.org/10.1016/j.arabjc.2011.01.016

    Article  CAS  Google Scholar 

  34. Soliman NK, Mohamed HS, Ahmed SA, Sayed FH, Elghandour AH, Ahmed SA (2019) Cd2+ and Cu2+ removal by the waste of the marine brown macroalga Hydroclathrus clathratus. Environ Tech Innovation 15:100365. https://doi.org/10.1016/j.eti.2019.100365

    Article  Google Scholar 

  35. Heidarpour A, Aliasgharzad N, Khoshmanzar E, Kkhoshru B, Lajayer BA (2019) Bio-removal of Zn from contaminated water by using green algae isolates. Environ Tech Innov 16:100464. https://doi.org/10.1016/j.eti.2019.100464

    Article  Google Scholar 

  36. Shoaib AGM, El-Sikaily A, El Nemr A, Mohamed AE-D, Hassan AA (2020) Testing the carbonization condition for surface area preparation of activated carbon followed Type-IV from green alga Ulva lactuca. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-00823-w

    Article  Google Scholar 

  37. ASTM D2866-11 (2018) Standard Test Method for Total Ash Content of Activated Carbon, ASTM International, West Conshohocken, PA, 2018, https://www.astm.org/Standards/D2866.htm

  38. ASTM D6683-19 (2019) Standard Test Method for Measuring Bulk Density Values of Powders and Other Bulk Solids as Function of Compressive Stress. ASTM International, West Conshohocken, PA. https://www.astm.org/Standards/D6683.htm

  39. Sugumaran P, Susan VP, Ravichandran P, Seshadri S (2012) Production and characterization of activated carbon from banana empty fruit bunch and Delonix regia fruit pod. J Sustain Energy Environ 3:125–132

    Google Scholar 

  40. Rouquerol F, Rouquerol J, Sing KSW (1999) Adsorption by powders and porous solids. Academic Press, INC, London

    Google Scholar 

  41. Brunauer S, Emmett PH, Teller E (1939) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  42. Naderi M (2014) Chapter fourteen—surface area: Brunauer–Emmett–Teller (BET). Surface Measurement Systems Ltd, Alperton, London, UK

    Google Scholar 

  43. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen Isotherms. J Am Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  44. Sing K (2001) The use of nitrogen adsorption for the characterization of porous materials. Colloids Surf A 187–188:3–9

    Article  Google Scholar 

  45. Mahamad MN, Zaini MAA, Zakaria ZA (2015) Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. Int Biodeterior Biodegradation 102:274–280

    Article  CAS  Google Scholar 

  46. Yu L, Luo Y-M (2014) The adsorption mechanism of anionic and cationic dyes by Jerusalem artichokestalk-based mesoporous activated carbon. J Environ Chem Eng 2:220–229

    Article  CAS  Google Scholar 

  47. Köseoğlu E, Akmil-Başar C (2015) Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv Powder Technol 26(3):811–818

    Article  Google Scholar 

  48. Kaviyarasu K, Magdalane CM, Jayakumar D, Samson Y, Bashir AKH, Maaza M, Letsholathebe D, Mahmoud AH, Kennedy J (2020) High performance of pyrochlore like Sm2Ti2O7 heterojunction photocatalyst for efficient degradation of rhodamine-B dye with waste water under visible light irradiation. J King Saud Univ Sci 32:1516–1522. https://doi.org/10.1016/j.jksus.2019.12.006

    Article  Google Scholar 

  49. Magdalane CM, Kaviyarasu K, Priyadharsini GMA, Bashir AKH, Mayedwa N, Matinise N, Isaev AB, Al-Dhabi NA, Arasu MV, Arokiyaraj S, Kennedy J, Maaza M (2019) Improved photocatalytic decomposition of aqueous Rhodamine-B by solar light illuminated hierarchical yttria nanosphere decorated ceria nanorods. J Mater Res Technol 8(3):2898–2909. https://doi.org/10.1016/j.jmrt.2018.11.019

    Article  CAS  Google Scholar 

  50. Fu Y, Viraraghavan T (2002) Removal of Congo red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res 7:239–247

    Article  CAS  Google Scholar 

  51. Khaled A, El Nemr A, El-Sikaily A, Abdelwahab O (2009) Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies. J Hazard Mater 165:100–110

    Article  CAS  Google Scholar 

  52. Borah L, Goswami M, Phukan P (2015) Adsorption of methylene blue and eosin yellow using porous carbon prepared from tea waste: adsorption equilibrium, kinetics and thermodynamics study. J Environ Chem Eng 3(2):1018–1028

    Article  CAS  Google Scholar 

  53. Essomba JS, Nsami JN, Belibi PDB, Tagne GM, Mbadcam JK (2014) Adsorption of cadmium(II) ions from aqueous solution onto kaolinite and metakaolinite. Pure Appl Chem Sci 2(11):11–30

    Article  Google Scholar 

  54. Ngouateu RBL, Sone PMAK, Nsami JN, Kouotou D, Belibi PDB, Mbadcam JK (2015) Kinetics and equilibrium studies of the adsorption of phenol and methylene blue onto cola nut shell based activated carbon. Int J Cur Res Rev 7(9):1–9

    Google Scholar 

  55. Langmuir IT (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  56. Freundlich HMF (1906) Über die adsorption in lösungen. Z Phys Chem (Leipzig) 57A:385–470

    Google Scholar 

  57. Subbareddy Y, Kumar RN, Sudhakar BK, Reddy KR, Martha SK, Kaviyarasu K (2020) A facile approach of adsorption of acid blue 9 on aluminium silicate-coated Fuller’s Earth––Equilibrium and kinetics studies. Surf Interfaces 19:100503. https://doi.org/10.1016/j.surfin.2020.100503

    Article  CAS  Google Scholar 

  58. Raja A, Rajasekaran P, Selvakumar K, Arunpandian M, Kaviyarasu K, Bahadur SA, Swaminathan M (2020) Visible active reduced graphene oxide-BiVO4-ZnO ternary photocatalyst for efficient removal of ciprofloxacin. Sep Purif Technol 233:115996. https://doi.org/10.1016/j.seppur.2019.115996

    Article  CAS  Google Scholar 

  59. Raja A, Selvakumar K, Rajasekaran P, Arunpandian M, Ashokkumar S, Kaviyarasu K, Bahadur SA, Swaminathan M (2019) Visible active reduced graphene oxide loaded titania for photodecomposition of ciprofloxacin and its antibacterial activity. Colloids Surf A 564:23–30. https://doi.org/10.1016/j.colsurfa.2018.12.024

    Article  CAS  Google Scholar 

  60. Reddy YS, Magdalane CM, Kaviyarasu K, Mola GT, Kennedy J, Maaza M (2018) Equilibrium and kinetic studies of the adsorption of acid blue 9 and Safranin O from aqueous solutions by MgO decked FLG coated Fuller’s earth. J Phys Chem Solids 123:43–51. https://doi.org/10.1016/j.jpcs.2018.07.009

    Article  CAS  Google Scholar 

  61. Alhaji NMI, Nathiya D, Kaviyarasu K, Meshram M, Ayeshamariam A (2019) A comparative study of structural and photocatalytic mechanism of AgGaO2 nanocomposites for equilibrium and kinetics evaluation of adsorption parameters. Surf Interfaces 17:100375. https://doi.org/10.1016/j.surfin.2019.100375

    Article  CAS  Google Scholar 

  62. El Nemr A, El Sikaily A, Khaled A (2010) Modeling of adsorption isotherms of methylene blue onto rice husk activated carbon. Egypt J Aquat Res 36(3):403–425

    Google Scholar 

  63. Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin based adsorbent: kinetic and equilibrium studies. Sep Purif Technol 53:97–110

    Article  CAS  Google Scholar 

  64. Lagergren SZ (1898) ur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar 24:1–39

    Google Scholar 

  65. Ho YS, McKay G, Wase DAJ, Foster CF (2000) Study of the sorption of divalent metal ions on to peat. Adsorpt Sci Technol 18:639–650

    Article  CAS  Google Scholar 

  66. Zeldowitsch J (1934) Über den mechanismus der katalytischen oxydation von CO and MnO2. Acta Physicochim URSS 1:449–464

    Google Scholar 

  67. Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption on soils. Soil Sci Soc Am J 44:265–268

    Article  CAS  Google Scholar 

  68. Sparks DL (1986) Kinetics of reaction in pure and mixed systems, in soil physical chemistry. CRC Press, Boca Raton

    Google Scholar 

  69. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanity Eng Div Am Soc Civil Eng 89:31–59

    Article  Google Scholar 

  70. Srinivasan K, Balasubramanian N, Ramakrishan TV (1988) Studies on chromium removal by rice husk carbon. Ind J Environ Health 30:376–387

    CAS  Google Scholar 

  71. Boyed GE, Adamson AM, Myers LS (1949) The exchange adsorption of ions from aqueous solutions by organic Zeolites. J Am Chem Soc 69(11):2836–2848

    Article  Google Scholar 

  72. Konicki W, Pełech I, Mijowska E, Jasinska IA (2012) dsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe3C nanocomposite: kinetics, equilibrium and thermodynamics. Chem Eng J 210:87–95

    Article  CAS  Google Scholar 

  73. Abbasiana M, Jaymandb M, Niroomanda P, Farnoudian-Habibib A, Karaj-Abadc SG (2017) Grafting of aniline derivatives onto chitosan and their applications for removal of reactive dyes from industrial effluents. Inter J Biol Macromol 95:393–403

    Article  Google Scholar 

  74. Fathia MR, Asfaram A, Farhangi A (2015) Removal of Direct Red 23 from aqueous solution using corn stalks: isotherms, kinetics and thermodynamic studies. Spectrochim Acta Part A Mol Biomol Spectrosc 135:364–372

    Article  Google Scholar 

  75. Hebeish A, Ramadan MA, Abdel-Halim E, Abo-Okeil A (2011) An effective adsorbent based on sawdust for removal of direct dye from aqueous solutions. Clean Technol Environ Policy 13:713–718

    Article  CAS  Google Scholar 

  76. Tan LS, Jain K, Rozaini CA (2010) Adsorption of textile dye from aqueous solution on pretreated mangrove bark, an agricultural waste: equilibrium and kinetic studies. J Appl Sci Environ Sanit 5:283–294

    CAS  Google Scholar 

  77. Holliman PJ, Velasco BV, Butler I, Wijdekop M, Worsley DA (2008) Studies of dye sensitisation kinetics and sorption isotherms of direct red 23 on titania. Int J Photoenergy 2008:1–7

    Article  Google Scholar 

  78. Ardejani FD, Badii K, Limaee NY, Mahmoodi NM, Arami M, Shafaei SZ, Mirhabibi AR (2007) Numerical modelling and laboratory studies on the removal of Direct Red 23 and Direct Red 80 dyes from textile effluents using orange peel, a low-cost adsorbent. Dyes Pigm 73:178–185

    Article  Google Scholar 

  79. Abdelwahab O, El Nemr A, El Sikaily A, Khaled A (2005) Use of rice husk for adsorption of direct dyes from aqueous solution: a case study of Direct F. Scarlet. Egypt J Aquat Res 31:1–11

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AGMS conducted the practical part and wrote the original draft. AEN supervised the practical work, corrected the manuscript and submitted the manuscript. AES, AE-AM, and AFH supervised the work and SR corrected the manuscript.

Corresponding author

Correspondence to Ahmed El Nemr.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Nemr, A., Shoaib, A.G.M., El Sikaily, A. et al. Utilization of green alga Ulva lactuca for sustainable production of meso-micro porous nano activated carbon for adsorption of Direct Red 23 dye from aquatic environment. Carbon Lett. 32, 153–168 (2022). https://doi.org/10.1007/s42823-021-00262-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00262-1

Keywords

Navigation