Skip to main content

Advertisement

Log in

Nitrate-Induced Carbohydrate Accumulation in Chlorella sorokiniana and its Potential for Ethanol Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Microalgae are considered promising feedstocks for biofuel and bio-product generation. The algal carbohydrates can be hydrolyzed into sugars before their fermentation into ethanol. In this study, nutrient limitation strategy was employed to evaluate the biochemical composition of Chlorella sorokiniana. Limiting nitrate (1.0 g/L KNO3) in the culture medium increased the total carbohydrate and starch content of microalga by 50.28 and 34.06%, respectively. However, this significantly lowered their yield due to low microalgal biomass production. Cultivation of C. sorokiniana cells with 4.0 g/L KNO3 as nitrogen source for 8 days was optimum for bioethanol production as the highest total carbohydrate yield of 422.44 mg/L was obtained under these conditions. Nitrate limitation (1.0 g/L KNO3) favored the increased production of high-value carotenoids in C. sorokiniana that could further contribute to improving the economics of the bioethanol production process. Feasibility studies for ethanol production from C. sorokiniana revealed that a maximum of 13.86 mg/mL of reducing sugars was extracted in the hydrolysate by treating the microalgal biomass with 2.8% sulfuric acid at 121 °C for 30 min. Fermentation of acid hydrolysate produced ethanol at a concentration of 2.91 mg/mL in 96 h with 41.16% of theoretical yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Velazquez-Lucio J, Rodríguez-Jasso RM, Colla LM, Saenz-Galindo A, Cervantes-Cisneros DE, Aguilar CN, Fernandes BD, Ruiz HA (2018) Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Res J 5:780–791. https://doi.org/10.18331/BRJ2018.5.1.5

    Article  CAS  Google Scholar 

  2. Chen CY, Zhao XQ, Yen HW, Ho SH, Chang CL, Lee DJ, Bai FW, Chang JS (2013) Microalgae- based carbohydrates for biofuel production. Biochem Eng J 78:1–10. https://doi.org/10.1016/j.bej.2013.03.006

    Article  CAS  Google Scholar 

  3. Garcia LM, Adjalle K, Barnabe S, Ragha GSV (2017) Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. Renew Sust Energ Rev 76:493–506. https://doi.org/10.1016/j.rser.2017.03.024

    Article  Google Scholar 

  4. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210

    Article  CAS  Google Scholar 

  5. Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6(9):4607–4638

    Article  Google Scholar 

  6. Agwa OK, Nwosu IG, Abu GO (2017) Bioethanol production from Chlorella vulgaris biomass cultivated with Plantain (Musa paradisiaca) pells abstract. Adv Biosci Biotechnol 8:478–490. https://doi.org/10.4236/abb.2017.812035

    Article  CAS  Google Scholar 

  7. Barkia I, Saar N, Manning SR (2019) Microalgae for high-value products towards human health and nutrition. Mar Drugs 17(5):1–29

    Article  Google Scholar 

  8. Branyikova I, Marsalkova B, Doucha J, Branyik T, Bisova K, Zachleder V (2011) Microalgae - novel highly efficient starch producers. Biotechnol Bioeng 108:766–776. https://doi.org/10.1002/bit.23016

    Article  CAS  PubMed  Google Scholar 

  9. Zhu S, Wang Y, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014) Enhanced accumulation of carbohydrate and starch in Chlorella zofingiensis induced by starvation. Appl Biochem Biotechnol 174:2435–2445. https://doi.org/10.1007/s12010-014-1183-9

    Article  CAS  PubMed  Google Scholar 

  10. Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335. https://doi.org/10.1016/j.apenergy.2011.03.012

    Article  CAS  Google Scholar 

  11. Behrens PW, Bingham SE, Hoeksema SD, Cohoon DL, Cox JC (1989) Studies on the incorporation of CO2 into starch by Chlorella vulgaris. J Appl Phycol 1:123–130. https://doi.org/10.1007/BF00003874

    Article  Google Scholar 

  12. Ueda R, Hirayama S, Sugata K, Nakayama H (1996) Process for the production of ethanol from microalgae. US Patent 5,578,472

  13. Barros AI, Goncalves AL, Simoes M, Pires JCM (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev 41:1489–1500. https://doi.org/10.1016/j.rser.2014.09.037

    Article  Google Scholar 

  14. Phwan CK, Chew KW, Sebayang AH, Ong HC, Ling TC, Malek MA, Show PL (2019) Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae. Biotechnol Biofuels 12:191. https://doi.org/10.1186/s13068-019-1533-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46(1):304–309. https://doi.org/10.1016/j.procbio.2010.08.027

    Article  CAS  Google Scholar 

  16. Bojórquez NV, Rocha RV, Escalante MAA, Barajas JAS (2016) Production of bioethanol from biomass of microalgae Dunaliella tertiolecta. Int J Env Agri Res 2(2):110–116

    Google Scholar 

  17. Agustini NWS, Hidhayati N, Wibisono SA (2019) Effect of hydrolysis time and acid concentration on bioethanol production of microalgae Scenedesmus sp. IOP Conf Series Earth Environ Sci 308:1–11

    Google Scholar 

  18. Duarte LC, Fernandes TS, Carvalheiro F, Girio FM (2009) Dilute acid hydrolysis of wheat straw oligosaccharides. Appl Biochem Biotechnol 153(1):116–126

    Article  CAS  Google Scholar 

  19. Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78(1):29–36. https://doi.org/10.1007/s00253-007-1285-1

    Article  CAS  PubMed  Google Scholar 

  20. Yao CH, Ai JN, Cao XP, Xue S (2013) Salinity manipulation as an effective method for enhanced starch production in the marine microalga Tetraselmis subcordiformis. Bioresour Technol 146(6):663–671. https://doi.org/10.1016/j.biortech.2013.07.134

    Article  CAS  PubMed  Google Scholar 

  21. Margarites ACF, Costa JAV (2014) Increment of carbohydrate concentration of Chlorella minutissina microalgae for bioethanol production. Int J Res Appl 4(3):80–86

    Google Scholar 

  22. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  23. Kong WB, Yang H, Cao YT, Song H, Hua SF, Xia CG (2013) Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotropic culture. Food Technol Biotechnol 51(1):62–69

    CAS  Google Scholar 

  24. Lowry OH, Rosenbrough NL, Farr AL, Radall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  Google Scholar 

  25. Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protocols Food Anal Chem 1:F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01

    Article  Google Scholar 

  26. Nelson N (1994) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    Article  Google Scholar 

  27. Markou G, Angelidaki I, Nerantis E, Georgakakis D (2013) Bioethanol production by carbohydrate-enriched biomass Arthrospira (Spirulina) platensis. Energy 6:3937–3950. https://doi.org/10.3390/en6083937

    Article  CAS  Google Scholar 

  28. Caputi AJ, Ueda M, Brown T (1968) Spectrophotometric determination of ethanol in wine. Am J Enol Viticult 19(3):160–165

    CAS  Google Scholar 

  29. Suyono EA, Muavatun U, Husna F, Khotimah H, Pratiwi I, Husna R, Cahyani F, Purwanti Y, Samudra TT (2016) The effect of nitrogen stress in medium for increasing carbohydrate as a bioethanol source and carotenoid as an antioxidant from Chlorella zofingiensis culture. ARPN J Eng Appl Sci 11:2698–2701

    CAS  Google Scholar 

  30. Negi S, Barry AN, Friedland N, Sudasinghe N, Subramanian S, Pieris S, Holguin FO, Dungan B, Schaub T, Sayre R (2015) Impact of nitrogen limitation on biomass, photosynthesis, and lipid accumulation in Chlorella sorokiniana. J Appl Phycol 28:803–812. https://doi.org/10.1007/s10811-015-0652-z

    Article  CAS  Google Scholar 

  31. Mollers KB, Cannella D, Jorgensen H, Frigaard NU (2014) Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels 7(1):64. https://doi.org/10.1186/1754-6834-7-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Recht L, Zarka A, Boussiba S (2012) Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl Microbiol Biotechnol 94:1495–1503. https://doi.org/10.1007/s00253-012-3940-4

    Article  CAS  PubMed  Google Scholar 

  33. Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Ann Rev Plant Biol 54:207–233

    Article  CAS  Google Scholar 

  34. Michelon W, Da Silva ML, Mezzari MP, Pirolli M, Prandini JM, Soares HM (2016) Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate. Applied Biochem Biotechnol 178(7):1407–1419. https://doi.org/10.1007/s12010-015-1955-x

    Article  CAS  Google Scholar 

  35. Vello V, Chu WL, Lim PE, Majid NA, Phang SM (2018) Metabolomic profiles of tropical Chlorella species in response to physiological changes during nitrogen deprivation. J Appl Phycol 30:3131–3151. https://doi.org/10.1007/s10811-018-1504-4

    Article  CAS  Google Scholar 

  36. Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636. https://doi.org/10.1007/s00253-008-1681-1

    Article  CAS  PubMed  Google Scholar 

  37. Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light and nitrogen starvation on the content and composition of carotenoids of the green microalga Parietochloris incisa. Russ J Plant Physiol 55(4):455–462. https://doi.org/10.1134/S1021443708040043

    Article  CAS  Google Scholar 

  38. Gouveia L (2014) From tiny microalgae to huge biorefineries. Oceanography 2(1):1–8. https://doi.org/10.4172/2332-2632.1000120

    Article  Google Scholar 

  39. Khan MI, Lee MG, Shin JH, Kim JD (2017) Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production. AMB Express 7:19. https://doi.org/10.1186/s13568-016-0320-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seon G, Kim HS, Cho JM, Kim M, Park WK, Chang YK (2020) Effect of post-treatment process of microalgal hydrolysate on bioethanol production. Sci Rep 10(1):1–2. https://doi.org/10.1038/s41598-020-73816-4

    Article  CAS  Google Scholar 

  41. Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    Article  CAS  Google Scholar 

  42. Kim KH, Choi IS, Kim HM, Wi SG, Bae HJ (2014) Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour Technol 153:47–54

    Article  CAS  Google Scholar 

  43. Nguyen MT, Choi SP, Lee JW, Lee JH, Sim SJ (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19(2):161–166

    Article  CAS  Google Scholar 

  44. Wang X, Liu X, Wang G (2011) Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation. J Integr Plant Biol 53(3):246–252

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Head, Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, for providing the necessary facilities to carry out this study.

Author information

Authors and Affiliations

Authors

Contributions

MST and AK conceived and designed the experimental study. MS was involved in the experimental setup. APK performed the experiments and collected data. The manuscript was written and edited by APK, MST, and AK.

Corresponding author

Correspondence to Monica Sachdeva Taggar.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Authorship Consent

All the authors read, approved the final manuscript, and agreed for this submission.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

Growth (a.u.) of C. sorokiniana grown in a medium containing different potassium nitrate levels. Values are mean ± standard error of three replicates (DOCX 18 KB)

Fig. S2

Fresh biomass and dry biomass (mg/L) of C. sorokiniana grown in a medium containing different potassium nitrate levels. Values are mean ± standard error of three replicates (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Taggar, M.S., Kalia, A. et al. Nitrate-Induced Carbohydrate Accumulation in Chlorella sorokiniana and its Potential for Ethanol Production. Bioenerg. Res. 15, 253–263 (2022). https://doi.org/10.1007/s12155-021-10292-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10292-2

Keywords

Navigation