Skip to main content
Log in

Metalaxyl-M, phosphorous acid and potassium silicate applied as soil drenches show different chestnut seedling performance and protection against Phytophthora root rot

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The application as soil drenches of three commercial products containing metalaxyl, phosphorous acid or potassium silicate, were studied as a means of controlling Phytophthora in chestnut (Castanea sativa Mill.) seedlings. In the metalaxyl treatment no plant deaths were recorded, whereas with the phosphorous acid and potassium silicate applications, and in the untreated control, the mortality rate was respectively 33.3, 44.4 and 77.8%. The presence of Phytophthora was detected in plants and soils at the end of the experiment which means that the three products did not eliminate the pathogen, and that they only gave temporary protection to the plant. In the treatments receiving metalaxyl or phosphorous acid, the plants showed a sharp drop in growth compared to the surviving plants of the control. Soil analyses revealed a high increase in exchangeable acidity, a high reduction in pH and a high increase in Mn levels in the soils treated with the products containing metalaxyl or phosphorous acid. In these treatments, elemental tissue analysis and nutrient recovery by plants revealed Mn levels far above the upper limit of the sufficiency range, with the toxicity of Mn being the suspected cause for the strong reduction in plant growth. These results indicate that when applying such products to the soil, their concentration and/or their ability to influence the soil pH should be evaluated and adequate measures of pH adjustment undertaken. In the case of phosphorous acid, its use can be replaced by phosphite salts. K-silicate did not show adverse effects on plant growth but provided less protection against Phytophthora than metalaxyl or phosphorous acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afonso, S., Arrobas, M., & Rodrigues, M. A. (2020). Soil and plant analyses to diagnose hop fields irregular growth. Journal of Soil Science and Plant Nutrition, 20, 1999–2013.

    Article  CAS  Google Scholar 

  • Akilli, S., Serçe, Ç. U., Katircioğlu, Y. Z., & Maden, S. (2012). Involvement of Phytophthora spp. in chestnut decline in the Black Sea region of Turkey. Forest Pathology, 42, 377–386.

    Article  Google Scholar 

  • Akinsanmi, O. A., & Drenth, A. (2013). Phosphite and metalaxyl rejuvenate macadamia trees in decline caused by Phytophthora cinnamomi. Crop Protection, 53, 29–23.

    Article  CAS  Google Scholar 

  • Arrobas, M., Afonso, S., Ferreira, I. Q., Moutinho-Pereira, J. M., Correia, C. M., & Rodrigues, M. A. (2017). Liming and application of nitrogen, phosphorus, potassium and boron on a young plantation of chestnut. Turkish Journal of Agriculture and Forestry, 41, 441–451.

    Article  CAS  Google Scholar 

  • Arrobas, M., Afonso, S., & Rodrigues, M. A. (2018a). Diagnosing the nutritional condition of chestnut groves by soil and leaf analyses. Scientia Horticulturae, 228, 113–121.

    Article  CAS  Google Scholar 

  • Arrobas, M., Ferreira, I. Q., Afonso, S., & Rodrigues, M. A. (2018b). Sufficiency ranges and crop nutrient removals for peppermint (Mentha x piperita L.) established from field and pot fertilizer experiments. Communications in Soil Science and Plant Analysis, 49(14), 1719–1730.

    Article  CAS  Google Scholar 

  • Balbino, L. R. (1968). La méthode Egner-Riehm et la détermination du phosfore et du potassium «assimilável» des sols du Portugal. II Col. Medit Cont. Fert. Plantas Cultivadas, pp 55–65.

  • Barrett, S. R., Shearer, B. L., & Hardy, G. E. (2004). Phytotoxicity in relation to in planta concentration of the fungicide phosphite in nine Western Australian native species. Australasian Plant Pathology, 33, 521e528.

    Article  Google Scholar 

  • Bekker, T. F., Labuschagne, N., Aveling, T., Regnier, T., & Kaiser, C. (2014). Effects of soil drenching of water-soluble potassium silicate on commercial avocado (Persea americana mill.) orchard trees infected with Phytophthora cinnamomi Rands on root density, canopy health, induction and concentration of phenolic compounds. South African Journal of Plant and Soil, 31, 101–107.

    Article  Google Scholar 

  • Biocca, M., Motta, E., Cacciola, S. O., & Magnano Di San Lio, G. (1993). Identification of Phytophthora spp. associated with ink disease of chestnut in Central Italy. Proc. International Congress on Chestnut, Spoleto (Italy), pp. 527–532.

  • Bryson, G., Mills, H., Sasseville, D., Jones Jr., J. B., & Barker, A. (2014). Plant analysis handbook III: A guide to sampling, preparation, analysis and interpretation for agronomic and horticultural crops. Micro-Macro Publishing.

  • Carneiro-Carvalho, A., Pereira, C., Marques, T., Martins, L., Anjos, R., Pinto, T., Lousada, J., & Gomes-Laranjo, J. (2017). Potential of silicon fertilization in the resistance of chestnut plants to ink disease (Phytophthora cinnamomi). International Journal of Environment, Agriculture and Biotechnology, 2(5), 2740–2753.

    Article  Google Scholar 

  • Carneiro-Carvalho, A., Anjos, R., Aires, A., Marques, T., Pinto, T., & Gomes-Laranjo, J. (2019). Ecophysiological study of the impact of SiK® fertilization on Castanea sativa mill. Seedling tolerance to high temperature. Photosynthetica, 57(4), 1165–1175.

    Article  CAS  Google Scholar 

  • Carneiro-Carvalho, A., Anjos, R., Pinto, T., & Gomes-Laranjo, J. (2020). Stress oxidative evaluation on SiK®-supplemented Castanea sativa mill. Plants Growing Under High Temperature. Journal of Soil Science and Plant Nutrition, 21, 415–425. https://doi.org/10.1007/s42729-020-00370-3.

    Article  CAS  Google Scholar 

  • Coelho, V. (2009). Efeito do fosfonato de potássio na protecção das raízes do castanheiro (Castanea sativa Mill.) contra Phytophthora cinnamomi. MSc Thesis in Agroecology. Instituto Politécnico Bragança. 97 p.

  • Cohen, Y., & Coffey, M. D. (1986). Systemic fungicides and the control of oomycetes. Annual Review of Phytopathology, 24, 311–338.

    Article  CAS  Google Scholar 

  • Crandall, B. S., Gravatt, G. F., & Ryan, M. M. (1945). Root disease of Castanea species and some coniferous and broadleaf nursery stocks, caused by Phytophthora cinnamomi. Phytopathology, 35, 162–180.

    Google Scholar 

  • Crane, C. E., & Shearer, B. L. (2014). Comparison of phosphite application methods for control of Phytophthora cinnamomi in threatened communities. Australasian Plant Pathology, 43, 143–149.

    Article  CAS  Google Scholar 

  • Darvas, J. M., Toerien, J. C., & Milne, D. L. (1984). Control of avocado root rot by trunk injection with phosethyl-Al. Plant Disease, 68, 691–693.

    Article  CAS  Google Scholar 

  • Davidse, L. C. (1987). Biochemical aspects of phenylamide fungicides – Action and resistance. In H. Lyr (Ed.), Modern selective fungicides – Properties, applications, mechanisms of action. Longman Sci. and Tech. Co. and John Wiley & Sons.

  • Dobrowolski, M. P., Shearer, B. L., Colquhoun, I. J., O’Brien, P. A., & Hardy, G. E. S. (2008). Selection for decreased sensitivity to phosphite in Phytophthora cinnamomi with prolonged use of fungicide. Plant Pathology, 57, 928–936.

    Article  CAS  Google Scholar 

  • du Jardin, P. (2012). The science of plant biostimulants: A bibliographic analysis. Adhoc study report to the European Commission DG ENTR. http://ec.europa.eu/enterprise/sectors/chemicals/files/fertilizers/finalreport bio 2012en.Pdf.

  • Erwin, C. D., & Ribeiro, K. O. (1996). Phytophthora - diseases worldwide. American Phytopathological Society.

  • FAOSTAT. (2020). Production: Crops. http://www.fao.org/faostat/en/#data/QC. Accessed November 2020.

  • Fenn, M. E., & Coffey, M. D. (1984). Studies on the in vitro and in vivo antifungal activity of Fosetyl-Al and phosphorus acid. Phytopathology, 74(5), 606–611.

    Article  CAS  Google Scholar 

  • Fernandes, C. T. (1979). Enfermedad de la tinta del castaño. Boletin de Sanidad Vegetal. Plagas, 5, 59–66.

    Google Scholar 

  • Ferreira, I. Q., Rodrigues, M. A., Moutinho-Pereira, J. M., Correia, C., & Arrobas, M. (2018). Olive tree response to applied phosphorus in field and pot experiments. Scientia Horticulturae. Scientia Horticulturae, 234, 236–244.

    Article  CAS  Google Scholar 

  • Ferreira, I. Q., Arrobas, M., Moutinho-Pereira, J. M., Correia, C. M., & Rodrigues, M. A. (2020). The effect of nitrogen applications on the growth of young olive trees and nitrogen use efficiency. Turkish Journal of Agriculture and Forestry, 44, 278–289.

    Article  CAS  Google Scholar 

  • Gomez-Merino, F. C., & Trejo-Telle, L. L. (2015). Biostimulant activity of phosphite in horticulture. Scientia Horticulturae, 196, 82–90.

    Article  CAS  Google Scholar 

  • González, M., Romero, M.-Á., Serrano, M.-S., & Sánchez, M.-E. (2020). Fosetyl-aluminium injection controls root rot disease affecting Quercus suber in southern Spain. European Journal of Plant Pathology, 156(1), 101–109.

    Article  CAS  Google Scholar 

  • Gouveia, E. (1993). Doença da Tinta do Castanheiro. Avaliação da resistência à Phytophthora cinnamomi Rands. MSc Thesis, Proteção Integrada. Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Lisboa, 135 p.

  • Gouveia, E. (2004). Métodos moleculares na identificação, caracterização e detecção de Phytophthora cambivora (Petri) Buisman e Phytophthora cinnamomi Rands associadas com a doença da tinta do castanheiro. PhD Thesis, Ciências Agronómicas/Protecção de Plantas, UTAD. Vila Real, 163 p.

  • Gouveia, E., Coelho, V., Sousa, N., Coutinho, S., Nunes, L., & Monteiro, M. L. (2009). Um método eficiente para a detecção de Phytophthora cinnamomi associada com a Doença da Tinta do Castanheiro na rizosfera de castanheiro (Castanea sativa Mill.). Revista de Ciências Agrárias, 32(1), 130–138.

    Google Scholar 

  • Guest, D. I., & Bompeix, G. (1990). The complex mode of action of phosphonates. Australasian Plant Pathology, 19, 113–115.

    Article  Google Scholar 

  • Guest, D., & Grant, B. R. (1991). The complex action of phosphonates as antifungal agents. Biological Reviews, 66, 159–187.

    Article  Google Scholar 

  • Guest, D. I., Pegg, K. C., & Whiley, A. W. (1995). Control of Phytophthora diseases of tree crops using trunk-injected phosphonates. Horticultural Reviews, 17, 299–330.

    Google Scholar 

  • Hardham, A. R., & Blakman, L. M. (2018). Phytophthora cinnamomi - pathogen profile update. Molecular Plant Pathology, 19(2), 260–285.

    Article  PubMed  Google Scholar 

  • Havlin, J. L., Tisdale, S. L., Nelson, W. L., & Beaton, J. D. (2014). Soil fertility and fertilizers, an introduction to nutrient management (8th ed.). Pearson.

  • Hibbett, D., Abarenkov, K., Kõljalg, U., Öpik, M., Chai, B., Cole, J., Wang, Q., Crous, P., Robert, V., Helgason, T., Herr, J., Kirk, P., Lueschow, S., O’Donnell, K., Nilsson, R., Oono, R., Schoch, C., Smyth, C., Walker, D., Porras-Alfaro, A., Taylor, J., & Geiser, D. (2016). Sequence-based classification and identification of Fungi. Mycologia, 108(6), 1049–1068.

    PubMed  Google Scholar 

  • Hu, J., Hong, C., & Strmoberg, E. L. (2010). Mefenoxam sensitivity in Phytophthora cinnamomi isolates. Plant Disease, 94, 39–44.

    Article  CAS  PubMed  Google Scholar 

  • Jarrel, W. M., & Beverly, R. B. (1981). The dilution effect in plant nutrition studies. Advances in Agronomy, 34, 197–224.

    Article  Google Scholar 

  • Jost, R., Pharmawati, M., Lapis-Gaza, H. R., Rossig, C., Berkowitz, O., Lambers, H., & Finnegan, P. M. (2015). Differentiating phosphate-dependent and phosphate-independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite. Journal of Experimental Botany, 66(9), 2501–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, T., Jung, M. H., Scanu, B., Seress, D., Kovács, G. M., Maia, C., Pérez-Sierra, A., Chang, T.-T., Chandelier, A., Heungens, K., Van Poucke, K., Abad-Campos, P., Léon, M., Cacciola, S. O., & Bakonyi, J. (2017a). Six new Phytophthora species from ITS clade 7a including two sexually functional heterothallic hybrid species detected in natural ecosystems in Taiwan. Persoonia, 38(36), 100–135.

    Article  CAS  PubMed  Google Scholar 

  • Jung, T., Jung, M. H., Cacciola, S. O., Cech, T., Bakonyi, J., Seress, D., Mosca, S., Schena, L., Seddaiu, S., Pane, A., Magnano, G., Maia, C., Cravador, A., Franceschini, A., & Scanu, B. (2017b). Multiple new cryptic pathogenic Phytophthora species from Fagaceae forests in Austria, Italy and Portugal. IMA Fungus, 8(2), 219–244.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaiser, C., van der Merwe, R., Bekker, T. F., & Labuschagne, N. (2005). In-vitro inhibition of mycelial growth of several phytopathogenic fungi, including Phytophthora cinnamomi by soluble silicon. South African Avocado Growers’ Association Yearbook, 28, 70–74pp.

    Google Scholar 

  • Kim, S. G., Kim, K. W., Park, E. W., & Choi, D. (2002). Silicon-induced cell wall fortification of rice leaves: A possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 92, 1095–1103.

    Article  PubMed  Google Scholar 

  • Liljeroth, E., Lankinen, A., Wiik, L., Burra, D. D., Alexandersson, E., & Andreasson, E. (2016). Potassium phosphite combined with reduced doses of fungicides provides efficient protection against late blight in large-scale field trials. Crop Protection, 86, 42–55.

    Article  CAS  Google Scholar 

  • Lu, F., Zhao, J., Wu, J., Han, X., Wang, W., Liu, X., & Meng, R. (2018). Monitoring of resistance of phytophthora infestans on potato to metalaxyl and the control efficacy of alternative fungicides. Scientia Agricultura Sinica, 51(14), 2700–2710.

    Google Scholar 

  • Ma, J. F., & Takahashi, E. (2002). Soil, fertilizer, and plant silicon research in Japan. Elsevier.

  • Martins, L., Castro, J., Macedo, W., Marques, C., & Abreu, C. (2007). Assessment of the spread of chestnut ink disease using remote sensing and geostatistical methods. European Journal of Plant Pathology, 119, 159–164.

    Article  Google Scholar 

  • Masikane, S. L., Novela, P., Mohale, P., & McLeod, A. (2020). Effect of phosphonate application timing and -strategy on phosphite fruit and root residues of avocado. Crop Protection, 128, 105008.

    Article  CAS  Google Scholar 

  • McDonald, A. E., Grant, R. R., & Plaxton, W. C. (2001). Phosphite (phosphorous acid): Its relevance in the environment and agriculture and influence on plant phosphate starvation response. Journal of Plant Nutrition, 24, 1505–1519.

    Article  CAS  Google Scholar 

  • Nyoni, M., Lötze, E., Mazzola, M., Wessels, J. P. B., & McLeod, A. (2019). Evaluating different approaches in the application of phosphonates for the control of apple root diseases. Plant Pathology, 48(5), 461–472.

    CAS  Google Scholar 

  • Petri, L. (1917). Ricerche sulla morfologia e biologia della Blepharospora cambivora, parasitica del castagno (research on the morphology and biology of Blepharospora cambivora, parasitica from Chestnut): Atti Regia Accademia dei Lincei, 26, 297–299.

  • Pilbeam, R. A., Colquhoun, I. J., Shearer, B., & Hardy, G. E. S. J. (2000). Phosphite concentration: Its effect on phytotoxicity symptoms and colonisation by Phytophthora cinnamomi in three understorey species of Eucalyptus marginata forest. Australasian Plant Pathology, 29, 86–95.

    Article  Google Scholar 

  • Ramírez-Gil, J. G., & Morales-Osorio, J. G. (2020). Integrated proposal for management of root rot caused by Phytophthora cinnamomi in avocado cv. Hass crops. Crop Protection, 137, 105271.

    Article  CAS  Google Scholar 

  • Rodrigues, M. A., Ferreira, I. Q., Afonso, S., & Arrobas, M. (2018). Sufficiency ranges and nutrient removals in lemon balm based on crop response to applied nitrogen, phosphorus, potassium and boron. Journal of Plant Nutrition, 41(8), 996–1008.

    Article  CAS  Google Scholar 

  • Rodrigues, M. A., Grade, V., Barroso, V., Pereira, A., Cassol, L. C., & Arrobas, M. (2019). Chestnut response to organo-mineral and controlled-release fertilizers in rainfed growing conditions. Journal of Soil Science and Plant Nutrition, 20, 380–391.

    Article  CAS  Google Scholar 

  • Rodrigues, M. A., Raimundo, S., Pereira, A., & Arrobas, M. (2020). Large chestnut trees (Castanea sativa) respond poorly to liming and fertilizer application. Journal of Soil Science and Plant Nutrition, 20, 1261–1270.

    Article  CAS  Google Scholar 

  • Rodrigues, M. A., Piroli, L. B., Forcelini, D., Raimundo, S., Domingues, L. S., Cassol, L. C., Correia, C. M., & Arrobas, M. (2021). Use of commercial mycorrhizal fungi in stress-free growing conditions of potted olive cuttings. Scientia Horticulturae, 275, 109712.

    Article  CAS  Google Scholar 

  • Savvas, D., & Ntatsi, G. (2015). Biostimulant activity of silicon in horticulture. Scientia Horticulturae, 196, 66–81.

    Article  CAS  Google Scholar 

  • Schwinn, F. J., Staub, T., & Urech, P. A. (1977). A new fungicide against diseases caused by oomycetes. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 42, 1181–1188.

    CAS  Google Scholar 

  • Sousa, A., AbdElgawad, H., Asard, H., Pinto, A., Soares, C., Branco-Neves, S., Braga, T., Azenha, M., Selim, S., Al Jaouni, S., Fidalgo, F., & Teixeira, J. (2017). Metalaxyl effects on antioxidant defenses in leaves and roots of Solanum nigrum L. Frontiers in Plant Science, 8, 1967.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stein, J. M., & Kirk, W. (2002). Containment of existing potato late blight (Phytophthora infestans) foliar epidemics with fungicides. Crop Protection, 21, 575–582.

    Article  CAS  Google Scholar 

  • Temminghoff, E. E. J. M., & Houba, V. G. (2004). Plant analysis procedures (2nd ed.). Klwuwer Academic Publishers.

  • Türkölmez, S., & Derviş, S. (2017). Activity of metalaxyl-M+mancozeb, fosetyl-Al, and phosphorous acid against Phytophthora crown and root rot of apricot and cherry caused by Phytophthora palmivora. Plant Protection Science, 53, 216–225.

    Article  Google Scholar 

  • Urech, P. A., Schwinn, F. J., & Staub, T. (1977). CGA 48988, a novel fungicide for the control of the late blight, downy mildews and related soil-borne diseases. Proc. 9th British Crop Protection Conference, 2, 623-631.

  • Van Reeuwijk, L. P. (2002). Procedures for soil analysis (6th ed., technical paper 9). ISRIC, FAO.

  • Vannini, A., & Vettraino, A. M. (2001). Ink disease in chestnuts: Impact on the European chestnut. Forest Snow and Landscape Research, 76(3), 345–350.

    Google Scholar 

  • Vettraino, A. M., Morel, O., Perlerou, C., Robin, C., Diamandis, S., & Vannini, A. (2005). Occurrence and distribution of Phytophthora species in European chestnut stands, and their association with ink disease and crown decline. European Journal of Plant Pathology, 111, 169–180.

    Article  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. Innis, D. Gelfand, J. Shinsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). Academic Press.

Download references

Acknowledgments

This research was funded by the Foundation for Science and Technology (FCT, Portugal) and FEDER under Programme PT2020 for financial support to CIMO (UIDB/00,690/2020). The research was integrated in the activities of the Operational Group EGIS – Estratégias de Gestão Integrada do Solo e da Água em Espécies Produtoras de Frutos Secos, and Operational Group Biochetnut IPM, funded by PT2020 and EAFRD (European Agricultural Fund for Rural Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ângelo Rodrigues.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was not applicable to this article since no information regarding individual participants was included in the study.

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosário, J.N., Coelho, V., Rodrigues, M.Â. et al. Metalaxyl-M, phosphorous acid and potassium silicate applied as soil drenches show different chestnut seedling performance and protection against Phytophthora root rot. Eur J Plant Pathol 161, 147–159 (2021). https://doi.org/10.1007/s10658-021-02309-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02309-5

Keywords

Navigation