Skip to main content

Advertisement

Log in

Different drought-adaptive capacity of a native Patagonian tree species (Nothofagus pumilio) resulting from local adaptation

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The resistance of different genotypes to abiotic stress may be due to genetic effects and/or to phenotypic plasticity allowing them to acclimate to variable conditions. The contribution of one or the other mechanism determines different strategies with implications for the species conservation and adaptive management. In this study, the ecophysiological response to drought of Nothofagus pumilio provenance sites (humid, mesic and xeric) from contrasting precipitation regimes was evaluated in a common garden trial. Seedlings were submitted to progressive drought by withdrawing irrigation (control vs water deficit). Assuming a genetic base determined by selection pressures, populations from more xeric sites are expected to show higher resistance to drought, e. g., higher resistance to xylem cavitation and safety margin, stronger stomatal control and osmotic adjustment. Vulnerability to cavitation curves were performed, and the percentage loss of conductivity (P12, P50, P88 and slope) was obtained. The water potential at turgor loss point (TLP) and the osmotic potential at full turgor (π100) were calculated from pressure–volume curves. The humid site showed a significantly higher P50 value than the mesic and the xeric sites. Pre-dawn water potential differed between the provenances from xeric and mesic conditions under severe water deficit. Natural selection was inferred from the comparison of differentiation at neutral markers and phenotypic traits (FST vs. PST), with signals of adaptive variation (PST > FST) for stomatal density, specific leaf area, TLP, π100 and stomatal conductance. Results suggest a differential adaptive capacity to drought of N. pumilio provenance sites that could be evidencing local adaptation to their home environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aitken SN, Bemmels JB (2016) Time to get moving: assisted gene flow of forest trees. Evol Appl 9:271–290. https://doi.org/10.1111/eva.12293

    Article  PubMed  Google Scholar 

  • Alberto FJ, Derory J, Boury C et al (2013) Imprints of natural selection along environmental gradients in phenology-related genes of quercus petraea. Genetics 195:495–512. https://doi.org/10.1534/genetics.113.153783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH (Ted), Gonzalez P, Fensham R, Zhen Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol and Manag 259(4):660–684. https://doi.org/10.1016/j.foreco.2009.09.001

  • Anderegg WRL, Meinzer FC (2015) Wood anatomy and plant hydraulics in a changing climate, Ch. 9. In: Hacke U (ed) Functional and Ecological Xylem Anatomy. Springer, Switzerland. https://doi.org/10.1007/978-3-319-15783-2_9

    Chapter  Google Scholar 

  • Anderegg WRL, Klein T, Bartlett M et al (2016) Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc Natl Acad Sci 113:5024–5029. https://doi.org/10.1073/pnas.1525678113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderegg WRL, Konings AG, Trugman AT et al (2018b) Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561:538–541. https://doi.org/10.1038/s41586-018-0539-7

    Article  CAS  PubMed  Google Scholar 

  • Anderegg WRL, Wolf A, Arango-Velez A, Choat B et al (2018a) Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecol Lett 21:968–977

    Article  Google Scholar 

  • Aranda I, Cano FJ, Gascó A et al (2014) Variation in photosynthetic performance and hydraulic architecture across European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water stress. Tree Physiol 35:34–46. https://doi.org/10.1093/treephys/tpu101

    Article  CAS  PubMed  Google Scholar 

  • Aubin I, Munson AD, Cardou F et al (2016) Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environ Rev 24:164–186. https://doi.org/10.1139/er-2015-0072

    Article  Google Scholar 

  • Bahamonde HA, Sánchez-Gómez D, Gyenge J et al (2019) Thinking in the sustainability of Nothofagus antarctica silvopastoral systems, how differ the responses of seedlings from different provenances to water shortage? Agroforest Syst 93:689–701. https://doi.org/10.1007/s10457-017-0167-5

    Article  Google Scholar 

  • Bartlett MK, Klein T, Jansen S et al (2016) The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proc Natl Acad Sci 113:13098–13103. https://doi.org/10.1073/pnas.1604088113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Software 67(1):1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Bertrand JAM, Delahaie B, Bourgeois YXC et al (2016) The role of selection and historical factors in driving population differentiation along an elevational gradient in an island bird. J Evol Biol 29:824–836. https://doi.org/10.1111/jeb.12829

    Article  CAS  PubMed  Google Scholar 

  • Brodribb TJ, Holbrook NM (2004) Diurnal depression of leaf hydraulic conductance in a tropical tree species. Plant, Cell Environ 27:820–827

    Article  Google Scholar 

  • Brommer JE (2011) Whither Pst? The approximation of Qst by Pst in evolutionary and conservation biology. J Evol Biol 24:1160–1168. https://doi.org/10.1111/j.1420-9101.2011.02268.x

    Article  CAS  PubMed  Google Scholar 

  • Bucci SJ, Scholz FG, Campanello PI et al (2012) Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem functionality? Tree Physiol 32:880–893

    Article  Google Scholar 

  • Bucci SJ, Carbonell Silletta LM, Garré A et al (2019) Functional relationships between hydraulic traits and the timing of diurnal depression of photosynthesis. Plant Cell Environ 42:1603–1614. https://doi.org/10.1111/pce.13512

    Article  CAS  PubMed  Google Scholar 

  • Castro-Diez P, Navarro J (2007) Water relations of seedlings of three Quercus species: variations across and within species grown in contrasting light and water regimes. Tree Physiol 27:1011–1018

    Article  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755. https://doi.org/10.1038/nature11688

    Article  CAS  PubMed  Google Scholar 

  • Choat B, Brodribb TJ, Brodersen CR et al (2018) Triggers of tree mortality under drought. Nature 558:531–539. https://doi.org/10.1038/s41586-018-0240-x

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S (2013) Methods for measuring plant vulnerability to cavitation: a critical review. J Experim Bot 64:4779–4791

    Article  CAS  Google Scholar 

  • Corcuera L (2003) Comparison between two methods of generating pressure-volume curves in Quercus species. Forest Syst 12(1):111–121

    Google Scholar 

  • Cruiziat P, Cochard T, Améglio T (2002) Hydraulic architecture of trees: main concepts and results. Ann For Sci 59(7):723–752. https://doi.org/10.1051/forest:2002060

    Article  Google Scholar 

  • Dalla-Salda G, Fernández ME, Sergent A-S et al (2014) Dynamics of cavitation in a Douglas-fir tree-ring: transition-wood, the lord of the ring? J Plant Hydraul. https://doi.org/10.20870/jph.2014.e005

    Article  Google Scholar 

  • Da Silva SB, Da Silva A (2018) Pstat: an R package to assess population differentiation in phenotypic traits. R J 10:447–454

    Article  Google Scholar 

  • Domec JC, Gartner BL (2001) Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees 15:204–214

    Article  Google Scholar 

  • Donoso C (1993) Bosques templados de Chile y Argentina Variación, Estructura y Dinámica. Ecología Forestal, Editorial Universitaria, Chile

  • Duursma R, Choat B (2017) fitplc - an R package to fit hydraulic vulnerability curves. J Plant Hydraulics 4:e002. https://doi.org/10.20870/jph.2017.e002

    Article  Google Scholar 

  • Edelaar P, Burraco P, Gomez-Mestre I (2011) Comparisons between Q ST and F ST-how wrong have we been? Mol Ecol 20:4830–4839

    Article  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 Plants: stomatal and non-stomatal limitations revisited. Ann Bot 89(2):183–189. https://doi.org/10.1093/aob/mcf027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flexas J, Carriquí M, Nadal M (2018) Gas exchange and hydraulics during drought in crops: who drives whom? J Exp Bot 69(16):3791–3795. https://doi.org/10.1093/jxb/ery235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gárate-Escamilla H, Hampe A, Vizcaíno-Palomar N, Robson TM, Benito Garzón M (2019) Range-wide variation in local adaptation and phenotypic plasticity of fitness-related traits in Fagus sylvatica and their implications under climate change. Global Ecol Biogeogr 28:1336–1350. https://doi.org/10.1111/geb.12936

    Article  Google Scholar 

  • Généré B, Garriou D (1999) Stock quality and field performance of Douglas fir seedlings under varying degrees of water stress. Ann for Sci 56:501–510

    Article  Google Scholar 

  • Gérard B, Bréda N (2014) Radial distribution of carbohydrate reserves in the trunk of declining European beech trees (Fagus sylvatica L). Ann Forest Sci 71(6):675–682. https://doi.org/10.1007/s13595-012-0240-1.-01102697f

    Article  Google Scholar 

  • Gleason SM, Westoby M, Jansen S et al (2016) Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytol 209:123–136. https://doi.org/10.1111/nph.13646

    Article  CAS  PubMed  Google Scholar 

  • Gömöry D, Ditmarová Ľ, Hrivnák M et al (2015) Differentiation in phenological and physiological traits in European beech (Fagus sylvatica L.). Eur J for Res 134:1075–1085. https://doi.org/10.1007/s10342-015-0910-2

    Article  Google Scholar 

  • Harayama H, Ikeda T, Ishida A, Yamamoto SI (2006) Seasonal variations in water relations in current-year leaves of evergreen trees with delayed greening. Tree Physiol 26:1025–1033

    Article  Google Scholar 

  • Hochberg U, Rockwell FE, Holbrook NM, Cochard H (2017) Iso/anisohydry: a plant–environment interaction rather than a simple hydraulic trait. Trends Plant Sci 23(2):112–120

    Article  Google Scholar 

  • Ignazi G, Bucci SJ, Premoli AC (2020) Stories from common gardens: Water shortage differentially affects Nothofagus pumilio from contrasting precipitation regimes. For Ecol Manag. https://doi.org/10.1016/j.foreco.2019.117796

    Article  Google Scholar 

  • Jacobsen AL, Pratt RB, Davis SD, Ewers FW (2007) Xylem cavitation resistance and seasonal hydraulics of shrub species from three arid plant communities. Plant Cell Environ 30:1599–1609

    Article  Google Scholar 

  • Klein T (2014) The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct Ecol 28(6):1313–1320

    Article  Google Scholar 

  • Leinonen T, Cano JM, MÄKinen H, Merilä J (2006) Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. J Evol Biol 19:1803–1812. https://doi.org/10.1111/j.1420-9101.2006.01182.x

    Article  CAS  PubMed  Google Scholar 

  • Leinonen T, O’Hara RB, Cano JM, Merilӓ J (2008) Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 21:1–17. https://doi.org/10.1111/j.1420-9101.2007.01445.x

    Article  CAS  PubMed  Google Scholar 

  • López R, Cano FJ, Choat B, Cochard H, Gil L (2016) Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradient. Front Plant Sci 7:769. https://doi.org/10.3389/fpls.2016.00769

    Article  PubMed  PubMed Central  Google Scholar 

  • López AS, López DR, Caballé G et al (2020) Local adaptation along a sharp rainfall gradient occurs in a native Patagonian grass, Festuca pallescens, regardless of extensive gene flow. Environ Exp Bot 171:103933. https://doi.org/10.1016/j.envexpbot.2019.103933

    Article  CAS  Google Scholar 

  • Mancini MV, Prieto AR, Paez MM, Schäbitz F (2008) Late Quaternary vegetation and climate of Patagonia. In: Rabassa J (ed) The Late Cenozoic of Patagonia and Tierra del Fuego. Developments in quaternary sciences, vol 11. Elsevier, Amsterdam, pp 351–367

    Chapter  Google Scholar 

  • Markgraf V, McGlone M, Hope G (1995) Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems- a southern perspectiv. Trends Ecol Evol 10:143–147

    Article  CAS  Google Scholar 

  • Martínez-Vilalta J, Poyatos R, Aguadé D, Retana J, Mencuccini M (2014) A new look at water transport regulation in plants. New Phytol 204:105–115

    Article  Google Scholar 

  • Martínez-Vilalta J, García-Forner N (2017) Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell Environ 40:962–976

    Article  Google Scholar 

  • Martin-StPaul N, Delzon S, Cochard H (2017) Plant resistance to drought depends on timely stomatal closure. Ecol Lett 20:1437–1447

    Article  Google Scholar 

  • McDowell N, Pockman WT, Allen CD et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x

    Article  PubMed  Google Scholar 

  • McDowell NG, Fisher RA, Xu C, Domec JC, Hölttä T, Mackay DS, Sperry JS, Boutz A, Dickman L, Gehres N, Limousin JM, Macalady A, Martínez-Vilalta J, Mencuccini M, Plaut JA, Ogée J, Pangle RE, Rasse DP, Ryan MG, Sevanto S, Waring RH, Williams AP, Yepez EA, Pockman WT (2013) Evaluating theories of drought-induced vegetation mortality using a multimodel–experiment framework. New Phytolog 200(2):304–321. https://doi.org/10.1111/nph.12465

  • Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009) Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecol 23, 922–930. https://doi.org/10.1111/j.1365-2435.2009.01577

  • Meinzer FC, Smith DD, Woodruff DR et al (2017) Stomatal kinetics and photo- synthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status. Plant, Cell Environ 40:1618–1628. https://doi.org/10.1111/pce.12970

    Article  CAS  Google Scholar 

  • Meinzer FC, Woodruff DR, Marias DE et al (2016) Mapping ‘hydroscapes’ along the iso- to anisohydric continuum of stomatal regulation of plant water status. Ecol Lett 19(11):1343–1352. https://doi.org/10.1111/ele.12670

    Article  PubMed  Google Scholar 

  • Merchant A, Callister A, Arndt S, Tausz M, Adams M (2007) Contrasting physio responses of six Eucalyptus species to water deficit. Ann Bot 100:1507–1515

    Article  Google Scholar 

  • Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903

    Article  Google Scholar 

  • Mitchell PJ, Veneklaas EJ, Lambers H, Burgess SSO (2008) Leaf water relations during summer water deficit: differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia. Plant Cell Environ 31:1791–1802

    Article  Google Scholar 

  • Nardini A, Pedà G, La Nicoletta R (2012) Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases carbon costs and ecological consequences. New Phytolog 196(3):788–798. https://doi.org/10.1111/j.1469-8137.2012.04294.x

    Article  Google Scholar 

  • Pammenter NW, Van der Willigen C (1998) A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18(8–9):589–593. https://doi.org/10.1093/treephys/18.8-9.589

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse P (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pometti CL, Bessega CF, Cialdella AM et al (2019) Evidence of local adaptation and stabilizing selection on quantitative traits in populations of the multipurpose American species Acacia aroma (Fabaceae). Bot J Linn Soc 191:128–141. https://doi.org/10.1093/botlinnean/boz023

    Article  Google Scholar 

  • Premoli AC, Brewer CA (2007) Environmental v. genetically driven variation in ecophysiological traits of Nothofagus pumilio from contrasting elevations. Aust J Bot 55:585–591

    Article  Google Scholar 

  • Proctor MCF, Nagy Z, Csintalan Z, Takács Z (1998) Water-content components in bryophytes: analysis of pressure-volume relationships. J Exp Bot 49:1845–1854. https://doi.org/10.1093/jexbot/49.328.1845

    Article  CAS  Google Scholar 

  • Pujol B, Wilson AJ, Ross RIC, Pannell JR (2008) Are QST-FST comparisons for natural populations meaningful? Mol Ecol 17:4782–4785

    Article  CAS  Google Scholar 

  • Ramirez-Villegas J, Jarvis A (2010) Downscaling global circulation model outputs: the Delta method. Decision and policy analysis working paper no. 1. In: (CIAT). CIdAT (ed).

  • Ramírez-Valiente JA, Sánchez-Gómez D, Aranda I, Valladares F (2010) Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities. Tree Physiol 30:618–627

    Article  Google Scholar 

  • Rasband WS. 2009. ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA. Available at http://rsb.info.nih.gov/ij/

  • R Development Core Team R (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/.

  • Rehfeldt GE, Wykoff WR, Ying CC (2001) Physiologic plasticity, evolution, and impacts of a changing climate on Pinus contorta. Clim Change 50:355–376. https://doi.org/10.1023/A:1010614216256

    Article  Google Scholar 

  • Rodríguez-Catón M, Villalba R, Morales M, Srur A (2016) Influence of droughts on Nothofagus pumilio forest decline across northern Patagonia, Argentina. Ecosphere 7(7): e01390. https://doi.org/10.1002/ecs2.1390

    Article  Google Scholar 

  • Sack L, Pasquet-Kok J, and PrometheusWiki contributors (2010) Leaf pressure-volume curve parameters. PrometheusWiki. Available at: /tiki-pagehistory.php?page=Leaf pressure-volume curve parameters&preview=16. Accessed November 28, 2019.

  • SAyDS (2002) Dirección de Bosques. Secretaría de Ambiente y Desarrollo Sustentable de la Nación. Primer Inventario Nacional de Bosques Nativos. Informe Nacional. Proyecto de Bosques Nativos y Áreas Protegidas, BIRF 4085-AR 1998-2005. República Argentina

  • Savolainen O, Bokma F, Garcı́a-Gil R, et al (2004) Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. For Ecol Manage 197:79–89. https://doi.org/10.1016/j.foreco.2004.05.006

    Article  Google Scholar 

  • Schinelli Casares T (2012) Producción de Nothofagus bajo condiciones controladas. 1a ed. Esquel: Ediciones INTA. 80 p. ISBN 978-987-679-145-8

  • Schmidt-Vogt H (1980) Characterization of plant material, IUFRO Meeting. S1.05-04. In Röhring E, Gussone HA. Waldbau. Zweiter band. Sechste Auflage, Neubearbeitet. Hamburg und Berlin, 1990. 314 p.

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmington EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  CAS  Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G (2014) Strong hydraulic segmentation and leaf senescence due to dehydration may trigger die-back in Nothofagus dombeyi under severe droughts: a comparison with the co-occurring Austrocedrus chilensis. Trees 28:1475–1487

    Article  Google Scholar 

  • Sergent AS, Varela SA, Barigah TS, Badel E, Cochard H, Dalla Salda G, Delzon S, Fernández ME, Guillemont J, Gyenge J, Lamarque LJ, Martinez Meier A, Rozenberg P, Torres Ruiz JM, Martin St Paul NK (2020b) A comparison of five methods to assess embolism resistance in trees. For Ecol Manag 468:118185. https://doi.org/10.1016/j.foreco.2020.118175

    Article  Google Scholar 

  • Skelton RP, West AG, Dawson TE (2015) Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc Nat Acad Sci 112(18):5744–5749. https://doi.org/10.1073/pnas.1503376112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soliani C, Sebastiani F, Marchelli P, Gallo L, Vendramin G (2010) Development of novel genomic microsatellite markers in the southern beech Nothofagus pumilio (Poepp. et Endl.) Krasser. In: Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009–30 November 2009. Mol Ecol Res 10, pp 404–408.

  • Soliani C, Tsuda Y, Bagnoli F et al (2015) Halfway encounters: Meeting points of colonization routes among the southern beeches Nothofagus pumilio and N. antarctica. Mol Phylogenet Evol 85:197–207. https://doi.org/10.1016/j.ympev.2015.01.006

    Article  PubMed  Google Scholar 

  • Soliani C, Umaña F, Mondino VA, et al (2017) Zonas genéticas de lenga y ñire en Argentina: y su aplicación en la conservación y manejo de los recursos forestales, 1st ed. 50pp. Ediciones INTA. Bariloche.

  • Soliani C, Azpilicueta MM, Arana MV, Marchelli P (2020) Clinal variation along precipitation gradients in Patagonian temperate forests: unravelling demographic and selection signatures in three Nothofagus spp. Ann for Sci 77:4. https://doi.org/10.1007/s13595-019-0908-x

    Article  Google Scholar 

  • Sparks JP, Black RA (1999) Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation. Tree Physiol 19:453–459

    Article  Google Scholar 

  • Sperry JS (2004) Coordinating stomatal and xylem functioning – an evolutionary perspective. New Phytolog 162(3):568–570. https://doi.org/10.1111/j.1469-8137.2004.01072.x

    Article  Google Scholar 

  • Sperry JS, Tyree MT (1990) Water-stress-induced xylem embolism in three species of conifers. Plant Cell Environ 13:427–436

    Article  Google Scholar 

  • Sperry JS (1995) Limitations on stem water transport and their consequences. In: Gartner B (ed) Plant stems: physiology and functional morphology. Academic, New York, pp 105–124

    Chapter  Google Scholar 

  • Sperry JS, Hacke UG, Oren RP, Comstock JP (2002) Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ 25(2):251–263. https://doi.org/10.1046/j.0016-8025.2001.00799.x

    Article  PubMed  Google Scholar 

  • Sun OJ, Sweet GB, Whitehead D, Buchan GD (1995) Physiological responses to water stress and waterlogging in Nothofagus species. Tree Physiol 15:629–638. https://doi.org/10.1093/treephys/15.10.629

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432

    Article  Google Scholar 

  • Tyree MT, Sperry JS (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Plant Physiol 88(3):574–580. https://doi.org/10.1104/pp.88.3.574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valladares F, Vilagrosa A, Peñuelas J, Ogaya R, Camarero JJ, Corcuera L, Sisó S, Gil-Pelegrín E (2004) Estrés hídrico: ecofisiología y escalas de la sequía. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Páginas, pp 163-190. Ministerio de Medio Ambiente, EGRAF, S. A., Madrid. ISBN: 84-8014-552-8

  • Varela SA, Gyenge JE, Fernández ME, Schlichter T (2010) Seedling drought stress susceptibility in two deciduous Nothofagus species of NW Patagonia. Trees 24:443–453. https://doi.org/10.1007/s00468-010-0412-2

    Article  Google Scholar 

  • Whitlock C, Moreno PI, Bartlein P (2007) Climatic controls of Holocene fire patterns in southern South America. Quatern Res 68:28–36

    Article  Google Scholar 

  • Woodruff DR, McCulloh KA, Warren JR, Meinzer FC, Lachenbruch B (2007) Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir. Plant, Cell Environ 30:559–569

    Article  Google Scholar 

  • Yücedağ C, Sanders J, Musah M, Gailing O (2019) Stomatal density in Quercus petraea and Q. robur natural populations in northern Turkey. Dendrobiology 81:58–64. https://doi.org/10.12657/denbio.081.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Teresa Schinelli Casares and Mario Huentú for technical assistance in the nursery, Anne-Sophie Sergent and Alejandro Martinez Meier for helping with hydraulic measurements and analysis, Verónica Arana for SLA calculations, Alejandro Aparicio for helpful advice in statistical interpretations, M. Victoria Lantschner for map drawing and María Elena Fernández for suggestions in a preliminary version of the text.

Funding

This work was funded by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT-FONCyT), Argentina [grant numbers PICT 2013-0603 and 2015-0193]. MGM has a fellowship from CONICET.

Author information

Authors and Affiliations

Authors

Contributions

CS contributed to conceptualization, investigation, funding acquisition, writing—reviewing and editing; MGM contributed to investigation, formal analysis, writing—reviewing and editing. PM contributed to investigation, formal analysis, writing—reviewing and editing. MMA contributed to conceptualization, investigation, formal analysis, writing—reviewing and editing; GDS contributed to conceptualization, investigation, formal analysis, writing—reviewing and editing, supervision.

Corresponding author

Correspondence to Guillermina Dalla-Salda.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Informed consent

All authors gave their consent for publication of the information reported in this paper.

Additional information

Communicated by Judy Simon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 114 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliani, C., Mattera, M.G., Marchelli, P. et al. Different drought-adaptive capacity of a native Patagonian tree species (Nothofagus pumilio) resulting from local adaptation. Eur J Forest Res 140, 1147–1161 (2021). https://doi.org/10.1007/s10342-021-01389-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-021-01389-6

Keywords

Navigation