Skip to main content
Log in

Contact electrification behaviors of micro-patterned polydimethylsiloxane

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We have investigated the contact electrification mechanism of identical materials using micro-patterned polydimethylsiloxane (PDMS) polymers. Commercially available sandpapers with various grit sizes were used for systematic control of the micro-patterns. Microstructure and hardness measurements revealed that the micro-patterns of sandpaper were successfully transferred to PDMS without significant change of the Young’s modulus. Clear triboelectric outputs were observed when contact separation was performed for identical PDMS polymers. The triboelectric outputs were significant when the microstructure was different, while the outputs were small when the microstructure was similar. These results were explained by the bond-breaking and ion/material transfer due to the roughness-induced temperature differences in identical PDMS polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Boyle, Renewable Energy: Power for a Sustainable Future (Oxford University Press, Oxford, UK, 2012)

    Google Scholar 

  2. D.S. Ginley, D. Cahen, Fundamentals of Materials for Energy and Environmental Sustainability (Cambridge University Press, New York, USA, 2011)

    Book  Google Scholar 

  3. Z.L. Wang, J.H. Song, Science 312, 242 (2006)

    Article  ADS  Google Scholar 

  4. F.R. Fan, Z.Q. Tian, Z.L. Wang, Nano Energy 1, 328 (2012)

    Article  Google Scholar 

  5. D.W. Jin, Y.J. Ko, C.W. Ahn, S. Hur, T.K. Lee, D.G. Jeong, M. Lee, C.-Y. Kang, J.H. Jung, Small 17, 2007289 (2021)

    Article  Google Scholar 

  6. Z.L. Wang, ACS Nano 7, 9533 (2013)

    Article  Google Scholar 

  7. H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A.C. Wang, C. Xu, Z.L. Wang, Nat. Commun. 10, 1427 (2019)

    Article  ADS  Google Scholar 

  8. H.S. Kim, D.Y. Kim, J.H. Kwak, J.H. Kim, M. Choi, D.H. Kim, D.W. Lee, D.S. Kong, J. Park, S. Jung, G.-H. Lee, M. Lee, J.H. Jung, Nano Energy 56, 338 (2019)

    Article  Google Scholar 

  9. J.H. Lee, K.H. Kim, M. Choi, J. Jeon, H.J. Yoon, J. Choi, Y.-S. Lee, M. Lee, J.J. Wie, Nano Energy 66, 104158 (2019)

    Article  Google Scholar 

  10. D.Y. Kim, H.S. Kim, J.H. Jung, J. Korean Phys. Soc. 69, 1720 (2016)

    Article  ADS  Google Scholar 

  11. Z. Li, J. Shen, I. Abdalla, J. Yu, B. Ding, Nano Energy 36, 341 (2017)

    Article  Google Scholar 

  12. B.-Y. Lee, D.H. Kim, J. Park, K.-I. Park, K.J. Lee, C.K. Jeong, Sci. Technol. Adv. Mater. 20, 758 (2019)

    Article  Google Scholar 

  13. J. Chung, H. Yong, H. Moon, Q.V. Duong, S.T. Choi, D. Kim, S. Lee, Adv. Sci. 5, 1801054 (2018)

    Article  Google Scholar 

  14. B.K. Yun, H.S. Kim, Y.J. Ko, G. Murillo, J.H. Jung, Nano Energy 36, 233 (2017)

    Article  Google Scholar 

  15. J. Chun, B.U. Ye, J.W. Lee, D. Choi, C.-Y. Kang, S.-W. Kim, Z.L. Wang, J.M. Baik, Nat. Commun. 7, 12985 (2016)

    Article  ADS  Google Scholar 

  16. A. Sutka, K. Manieks, L. Lapcinskis, P. Kaufelde, A. Linarts, A. Berzina, R. Zabels, V. Jurkans, I. Gornevs, J. Blums, M. Knite, Energy Environ. Sci. 12, 2417 (2019)

    Article  Google Scholar 

  17. S. Lin, L. Xu, C. Xu, X. Chen, A.C. Wang, B. Zhang, P. Lin, Y. Yang, H. Zhao, Z.L. Wang, Adv. Mater. 31, 1808197 (2019)

    Article  Google Scholar 

  18. M.S.U. Rasel, J.-Y. Park, Appl. Energy 206, 150 (2017)

    Article  Google Scholar 

  19. https://www.fine-tools.com/G10019.html

  20. Y. Yang, H. Zhang, Z.-H. Lin, Y.S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, Z.L. Wang, ACS Nano 7, 9213 (2013)

    Article  Google Scholar 

  21. F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z.L. Wang, Nano Lett. 12, 3109 (2012)

    Article  ADS  Google Scholar 

  22. A.N. Gent, Rubber Chem. Technol. 31, 896 (1958)

    Article  Google Scholar 

  23. Z. Wang, A.A. Volinsky, N.D. Gallant, J. Appl. Polym. Sci. 131, 41050 (2014)

    Article  Google Scholar 

  24. S. Liu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y. Hu, Z.L. Wang, Energy Environ. Sci. 6, 3576 (2013)

    Article  Google Scholar 

  25. W. Yang, X. Wang, H. Li, J. Wu, Y. Hu, Z. Li, H. Liu, Nano Energy 57, 41 (2019)

    Article  Google Scholar 

  26. Y. Liu, W. Liu, Z. Wang, W. He, Q. Tang, Y. Xi, X. Wang, H. Guo, C. Hu, Nat. Commun. 11, 1599 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Inha University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hoon Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, D.W., Lee, D.W., Ko, Y.J. et al. Contact electrification behaviors of micro-patterned polydimethylsiloxane. J. Korean Phys. Soc. 79, 81–86 (2021). https://doi.org/10.1007/s40042-021-00228-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00228-6

Keywords

Navigation