Skip to main content
Log in

An Overview on Starch-Based Sustainable Hydrogels: Potential Applications and Aspects

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Hydrogels are a kind of three dimensional polymeric network system which has a significant amount of water imbibing capacity despite being soluble in it. Because of the potential applications of hydrogels in different fields such as biomedical, pharmaceutical, personal care products, biosensors, and cosmetics, it has become a very popular area of research in recent decades. Hydrogels, prepared from synthetic polymers and petrochemicals are not ecofriendly. For preparing biodegradable hydrogels, most available plant polysaccharides like starch are utilized. In its structure, starch has a large number of hydroxyl groups that aid in hydrogel networking. For their easy availability and applications, starch-based hydrogels (SHs) have gained huge attention. Moreover, SHs are non-toxic, biocompatible, and cheap. For these reasons, SHs can be an alternative to synthetic hydrogels. The main focus of this review is to provide a comprehensive summary of the structure and characteristics of starch, preparation, and characterization of SHs. This review also addresses several potential multidimensional applications of SHs and shows some future aspects in accordance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2012, John Wiley and Sons

Fig. 4

Copyright 2011, Elsevier

Fig. 5
Fig. 6
Fig. 7
Fig. 8

Copyright 2012, John Wiley and Sons

Fig. 9

Copyright 2018, John Wiley and Sons; c and d reused with permission from [239]. Copyright 2018, Elsevier

Fig. 10

Copyright 2019, Elsevier

Fig. 11

Similar content being viewed by others

Abbreviations

SHs:

Starch based hydrogels

PLA:

Poly lactic acid

PGA:

Poly glycolic acid

AA:

Acrylic acid

KC:

Kappa-carrageenan

PVA:

Polyvinyl alcohol

AM:

Acrylamide

MBA:

N,N′-Methylenebisacrylamide

DMDAAC:

Dimethyl diallyl ammonium chloride

EG:

Ethylene glycol

MAA:

Methacrylic acid

PCL:

Polycaprolactone

AMPS:

2-Acrylamido-2-methylpropane-1-sulphonic acid

DMAEMA:

Dimethylaminoethyl methacrylate

AFM:

Atomic force microscopy

FTIR:

Fourier transform infrared spectroscopy

XRD:

X-ray diffraction

TGA:

Thermogravimetric analysis

DTA:

Differential thermal analysis

DTG:

Differential thermogravimetry

DSC:

Differential scanning calorimetry

GMA:

Glycidyl methacrylate

LDPE:

Low-density polyethylene

APS:

Ammonium persulphate

TEMED:

N,N,N,N-Tetramethylethylene diamine

LRD:

Laponite RD

HEMA:

2-Hydroxyethyl methacrylate

HES:

Hydroxyethyl starch

CB:

Coomassie brilliant

MB:

Methylene blue

MV:

Methyl violet

MO:

Methyl orange

AMPS:

2-Acrylamido-2-methylpropanesulfoacid

References

  1. Kabiri K, Omidian H, Zohuriaan-Mehr M, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289

    CAS  Google Scholar 

  2. Hassan A, Niazi MBK, Hussain A, Farrukh S, Ahmad T (2018) Development of anti-bacterial PVA/starch based hydrogel membrane for wound dressing. J Polym Environ 26(1):235–243

    CAS  Google Scholar 

  3. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Google Scholar 

  4. Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433

    CAS  Google Scholar 

  5. Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4(7):1228–1233

    CAS  PubMed  Google Scholar 

  6. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng B 14(2):149–165

    CAS  Google Scholar 

  7. Ferris CJ, Gilmore KJ, Wallace GG (2013) Modified gellan gum hydrogels for tissue engineering applications. Soft Matter 9(14):3705–3711

    CAS  Google Scholar 

  8. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    CAS  PubMed  Google Scholar 

  9. Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H (2005) Injectable biodegradable hydrogels composed of hyaluronic acid–tyramine conjugates for drug delivery and tissue engineering. Chem Commun 34:4312–4314

    Google Scholar 

  10. Sikareepaisan P, Ruktanonchai U, Supaphol P (2011) Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydr Polym 83(4):1457–1469

    CAS  Google Scholar 

  11. Ribeiro MP, Espiga A, Silva D, Baptista P, Henriques J, Ferreira C, Silva JC, Borges JP, Pires E, Chaves P (2009) Development of a new chitosan hydrogel for wound dressing. Wound Repair Regen 17(6):817–824

    PubMed  Google Scholar 

  12. Chen Y, Chen L, Bai H, Li L (2013) Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J Mater Chem A 1(6):1992–2001

    CAS  Google Scholar 

  13. Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interfaces 5(2):425–432

    CAS  PubMed  Google Scholar 

  14. Thombare N, Jha U, Mishra S, Siddiqui M (2017) Borax cross-linked guar gum hydrogels as potential adsorbents for water purification. Carbohydr Polym 168:274–281

    CAS  PubMed  Google Scholar 

  15. Kaihara S, Matsumura S, Fisher JP (2008) Synthesis and characterization of cyclic acetal based degradable hydrogels. Eur J Pharm Biopharm 68(1):67–73

    CAS  PubMed  Google Scholar 

  16. Stamatialis DF, Papenburg BJ, Girones M, Saiful S, Bettahalli SN, Schmitmeier S, Wessling M (2008) Medical applications of membranes: drug delivery, artificial organs and tissue engineering. J Membr Sci 308(1–2):1–34

    CAS  Google Scholar 

  17. Ismail H, Irani M, Ahmad Z (2013) Starch-based hydrogels: present status and applications. Int J Polym Mater Polym Biomater 62(7):411–420

    CAS  Google Scholar 

  18. Ho G-H, Yang T-H, Yang J (2006) Moisturizers comprising one or more of gamma-polyglutamic acid (gamma-PGA, H form), gamma-polyglutamates and gamma-polyglutamate hydrogels for use in cosmetic or personal care products. Google Patents

  19. Peng MC, Sethu V, Selvarajoo A (2020) Performance study of chia seeds, chia flour and Mimosa pudica hydrogel as polysaccharide-based superabsorbent polymers for sanitary napkins. Materials Today Commun. https://doi.org/10.1016/j.mtcomm.2020.101712

    Article  Google Scholar 

  20. Saxena AK (2010) Synthetic biodegradable hydrogel (PleuraSeal) sealant for sealing of lung tissue after thoracoscopic resection. J Thorac Cardiovasc Surg 139(2):496–497

    CAS  PubMed  Google Scholar 

  21. Junior CR, De Moura MR, Aouada FA (2017) Synthesis and characterization of intercalated nanocomposites based on poly (methacrylic acid) hydrogel and nanoclay cloisite-Na+ for possible application in agriculture. J Nanosci Nanotechnol 17(8):5878–5883

    CAS  Google Scholar 

  22. Bhatia JK, Kaith BS, Kalia S (2013) Polysaccharide hydrogels: synthesis, characterization, and applications. In: Polysaccharide based graft copolymers. Springer, Berlin, pp 271–290

  23. Elvira C, Mano J, San Roman J, Reis R (2002) Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials 23(9):1955–1966

    CAS  PubMed  Google Scholar 

  24. Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley, New York, p 279

    Google Scholar 

  25. Brannon-Peppas L, Harland RS (2012) Absorbent polymer technology. Elsevier, Amsterdam

    Google Scholar 

  26. Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, Lu TJ, Xu F (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23(6):660–672

    CAS  Google Scholar 

  27. Dergunov SA, Mun GA (2009) γ-Irradiated chitosan-polyvinyl pyrrolidone hydrogels as pH-sensitive protein delivery system. Radiat Phys Chem 78(1):65–68

    CAS  Google Scholar 

  28. Ganji F, Vasheghani FS, Vasheghani FE (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J (Engl) 19:375–398

    CAS  Google Scholar 

  29. Xu X, Bai B, Ding C, Wang H, Suo Y (2015) Synthesis and properties of an ecofriendly superabsorbent composite by grafting the poly (acrylic acid) onto the surface of dopamine-coated sea buckthorn branches. Ind Eng Chem Res 54(13):3268–3278

    CAS  Google Scholar 

  30. Lu D, Xiao C, Xu S (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3(6):366–375

    CAS  Google Scholar 

  31. Riyajan S-A, Sasithornsonti Y, Phinyocheep P (2012) Green natural rubber-g-modified starch for controlling urea release. Carbohydr Polym 89(1):251–258

    CAS  PubMed  Google Scholar 

  32. Zou W, Yu L, Liu X, Chen L, Zhang X, Qiao D, Zhang R (2012) Effects of amylose/amylopectin ratio on starch-based superabsorbent polymers. Carbohydr Polym 87(2):1583–1588

    CAS  Google Scholar 

  33. Hu X, Gao C (2008) Photoinitiating polymerization to prepare biocompatible chitosan hydrogels. J Appl Polym Sci 110(2):1059–1067

    CAS  Google Scholar 

  34. Popa EG, Carvalho PP, Dias AF, Santos TC, Santo VE, Marques AP, Viegas CA, Dias IR, Gomes ME, Reis RL (2014) Evaluation of the in vitro and in vivo biocompatibility of carrageenan-based hydrogels. J Biomed Mater Res A 102(11):4087–4097

    PubMed  Google Scholar 

  35. Liu J, Li Q, Su Y, Yue Q, Gao B (2014) Characterization and swelling–deswelling properties of wheat straw cellulose based semi-IPNs hydrogel. Carbohydr Polym 107:232–240

    CAS  PubMed  Google Scholar 

  36. Kato Y, Matsuo R, Isogai A (2003) Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohydr Polym 51(1):69–75

    CAS  Google Scholar 

  37. Aouada FA, Moura MRd, Lopes da Silva WT, Muniz EC, Mattoso LHC (2011) Preparation and characterization of hydrophilic, spectroscopic, and kinetic properties of hydrogels based on polyacrylamide and methylcellulose polysaccharide. J Appl Polym Sci 120(5):3004–3013

    CAS  Google Scholar 

  38. Teramoto N, Motoyama T, Yosomiya R, Shibata M (2003) Synthesis, thermal properties, and biodegradability of propyl-etherified starch. Eur Polym J 39(2):255–261

    CAS  Google Scholar 

  39. Pfister B, Zeeman SC (2016) Formation of starch in plant cells. Cell Mol Life Sci 73(14):2781–2807

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kittipongpatana OS, Sirithunyalug J, Laenger R (2006) Preparation and physicochemical properties of sodium carboxymethyl mungbean starches. Carbohydr Polym 63(1):105–112

    CAS  Google Scholar 

  41. Araújo MA, Cunha AM, Mota M (2004) Enzymatic degradation of starch-based thermoplastic compounds used in protheses: identification of the degradation products in solution. Biomaterials 25(13):2687–2693

    PubMed  Google Scholar 

  42. Zhang J-F, Sun X (2004) Mechanical properties of poly (lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules 5(4):1446–1451

    CAS  PubMed  Google Scholar 

  43. Garcı́a-Alonso A, Jiménez-Escrig A, Martı́n-Carrón N, Bravo L, Saura-Calixto F, (1999) Assessment of some parameters involved in the gelatinization and retrogradation of starch. Food Chem 66(2):181–187

    Google Scholar 

  44. Morrison WR, Karkalas J (1990) Starch. In: Methods in plant biochemistry, vol 2. Elsevier, London, pp 323–352

  45. White RJ, Budarin VL, Clark JH (2008) Tuneable mesoporous materials from α-d-polysaccharides. ChemSusChem Chem Sustain Energy Mater 1(5):408–411

    CAS  Google Scholar 

  46. García-González C, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86(4):1425–1438

    Google Scholar 

  47. Griffin G (1994) Starch polymer blends. Polym Degrad Stab 45(2):241–247

    CAS  Google Scholar 

  48. Pareta R, Edirisinghe M (2006) A novel method for the preparation of starch films and coatings. Carbohydr Polym 63(3):425–431

    CAS  Google Scholar 

  49. Park JS, Yang JH, Kim DH, Lee DH (2004) Degradability of expanded starch/PVA blends prepared using calcium carbonate as the expanding inhibitor. J Appl Polym Sci 93(2):911–919

    CAS  Google Scholar 

  50. Schwach E, Averous L (2004) Starch-based biodegradable blends: morphology and interface properties. Polym Int 53(12):2115–2124

    CAS  Google Scholar 

  51. Stepto R (2006) Understanding the processing of thermoplastic starch. In: Macromolecular symposia, 2006, vol 1. Wiley Online Library, USA, pp 571–577

  52. Mohamed NA, Fahmy MM (2012) Synthesis and antimicrobial activity of some novel cross-linked chitosan hydrogels. Int J Mol Sci 1(9):11194–11209

    Google Scholar 

  53. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30(1):38–70

    CAS  Google Scholar 

  54. Bikiaris D, Prinos J, Koutsopoulos K, Vouroutzis N, Pavlidou E, Frangis N, Panayiotou C (1998) LDPE/plasticized starch blends containing PE-g-MA copolymer as compatibilizer. Polym Degrad Stab 59(1–3):287–291

    CAS  Google Scholar 

  55. Liu LS, Kost J, Yan F, Spiro RC (2012) Hydrogels from biopolymer hybrid for biomedical, food, and functional food applications. Polymers 4(2):997–1011

    Google Scholar 

  56. Zhu K, Xiangzhou L, Shilin Y (1990) Preparation, characterization, and properties of polylactide (PLA)–poly (ethylene glycol) (PEG) copolymers: a potential drug carrier. J Appl Polym Sci 39(1):1–9

    CAS  Google Scholar 

  57. Youxin L, Kissel T (1993) Synthesis and properties of biodegradable ABA triblock copolymers consisting of poly (l-lactic acid) or poly (l-lactic-co-glycolic acid) A-blocks attached to central poly (oxyethylene) B-blocks. J Control Release 27(3):247–257

    Google Scholar 

  58. Heller J, Pangburn S, Roskos K (1990) Development of enzymatically degradable protective coatings for use in triggered drug delivery systems: derivatized starch hydrogels. Biomaterials 11(5):345–350

    CAS  PubMed  Google Scholar 

  59. Pereira C, Cunha A, Reis R, Vazquez B, San Roman J (1998) New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. J Mater Sci Mater Med 9(12):825–833

    CAS  PubMed  Google Scholar 

  60. Whistler RL, Daniel JR (2000) Starch. In: Kirk–Othmer encyclopedia of chemical technology. https://doi.org/10.1002/0471238961.1920011823080919.a01

  61. Robyt JF (2008) Starch: Structure, properties, chemistry, and enzymology. Glycoscience. https://doi.org/10.1007/978-3-540-30429-6_35

    Article  Google Scholar 

  62. Zhang L-M, Yang C, Yan L (2005) Perspectives on: strategies to fabricate starch-based hydrogels with potential biomedical applications. J Bioact Compat Polym 20(3):297–314

    CAS  Google Scholar 

  63. Tester RF, Karkalas J, Qi X (2004) Starch—composition, fine structure and architecture. J Cereal Sci 39(2):151–165

    CAS  Google Scholar 

  64. Nasri-Nasrabadi B, Mehrasa M, Rafienia M, Bonakdar S, Behzad T, Gavanji S (2014) Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydr Polym 108:232–238

    CAS  PubMed  Google Scholar 

  65. French D (1972) Fine structure of starch and its relationship to the organization of starch granules. J Jpn Soc Starch Sci 19(1):8–25

    CAS  Google Scholar 

  66. Mua J, Jackson D (1997) Fine structure of corn amylose and amylopectin fractions with various molecular weights. J Agric Food Chem 45(10):3840–3847

    CAS  Google Scholar 

  67. Buleon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23(2):85–112

    CAS  PubMed  Google Scholar 

  68. Biliaderis C (1998) Structures and phase transitions of starch polymers. ChemInform 29(47):57–168

    Google Scholar 

  69. Ellis RP, Cochrane MP, Dale MFB, Duffus CM, Lynn A, Morrison IM, Prentice RDM, Swanston JS, Tiller SA (1998) Starch production and industrial use. J Sci Food Agric 77(3):289–311

    CAS  Google Scholar 

  70. Domene-López D, García-Quesada JC, Martin-Gullon I, Montalbán MG (2019) Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers 11(7):1084

    PubMed Central  Google Scholar 

  71. Sajilata MG, Singhal RS, Kulkarni PR (2006) Resistant starch—a review. Compr Rev Food Sci Food Saf 5(1):1–17

    CAS  PubMed  Google Scholar 

  72. Wallace RA, Sanders GP, Ferl RJ (1996) Biology, the science of life. HarperCollins, New York

    Google Scholar 

  73. Tomasik P, Schilling CH (2004) Chemical modification of starch. Adv Carbohydr Chem Biochem 59:175–403

    CAS  PubMed  Google Scholar 

  74. Stepto R 92003) The processing of starch as a thermoplastic. In: Macromolecular symposia, 2003, vol 1. Wiley Online Library, USA, pp 203–212

  75. Primarini D, Ohta Y (2000) Some enzyme properties of raw starch digesting amylases from Streptomyces sp. No. 4. Starch-Stärke 52(1):28–32

    CAS  Google Scholar 

  76. Rodrigues A, Emeje M (2012) Recent applications of starch derivatives in nanodrug delivery. Carbohydr Polym 87(2):987–994

    CAS  Google Scholar 

  77. Xie F, Pollet E, Halley PJ, Averous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38(10–11):1590–1628

    CAS  Google Scholar 

  78. Choi E-J, Kim C-H, Park J-K (1999) Synthesis and characterization of starch-g-polycaprolactone copolymer. Macromolecules 32(22):7402–7408

    CAS  Google Scholar 

  79. Peidayesh H, Ahmadi Z, Khonakdar HA, Abdouss M, Chodák I (2020) Baked hydrogel from corn starch and chitosan blends cross-linked by citric acid: preparation and properties. Polym Adv Technol 31(6):1256–1269

    CAS  Google Scholar 

  80. Ghosh S, Viana J, Reis R, Mano J (2007) The double porogen approach as a new technique for the fabrication of interconnected poly (l-lactic acid) and starch based biodegradable scaffolds. J Mater Sci Mater Med 18(2):185–193

    CAS  PubMed  Google Scholar 

  81. Fan Y, Picchioni F (2020) Modification of starch: a review on the application of “green” solvents and controlled functionalization. Carbohydr Polym 241:116350

    CAS  PubMed  Google Scholar 

  82. Thakore I, Desai S, Sarawade B, Devi S (2001) Studies on biodegradability, morphology and thermo-mechanical properties of LDPE/modified starch blends. Eur Polym J 37(1):151–160

    CAS  Google Scholar 

  83. Lee B, Kim D, Ryu C-M (2008) A super-absorbent polymer combination promotes bacterial aggressiveness uncoupled from the epiphytic population. Plant Pathol J 24(3):283–288

    CAS  Google Scholar 

  84. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100

    CAS  Google Scholar 

  85. Li M, Witt T, Xie F, Warren FJ, Halley PJ, Gilbert RG (2015) Biodegradation of starch films: the roles of molecular and crystalline structure. Carbohydr Polym 122:115–122

    CAS  PubMed  Google Scholar 

  86. Cong H-P, Wang P, Yu S-H (2013) Stretchable and self-healing graphene oxide–polymer composite hydrogels: a dual-network design. Chem Mater 25(16):3357–3362

    CAS  Google Scholar 

  87. Yalpani M (2013) Polysaccharides: syntheses, modifications and structure/property relations. Elsevier, New York

    Google Scholar 

  88. Zhao W, Jin X, Cong Y, Liu Y, Fu J (2013) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88(3):327–339

    CAS  Google Scholar 

  89. Iizawa T, Taketa H, Maruta M, Ishido T, Gotoh T, Sakohara S (2007) Synthesis of porous poly (N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci 104(2):842–850

    CAS  Google Scholar 

  90. Yang L, Chu JS, Fix JA (2002) Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 235(1–2):1–15

    CAS  PubMed  Google Scholar 

  91. Maolin Z, Jun L, Min Y, Hongfei H (2000) The swelling behavior of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiat Phys Chem 58(4):397–400

    Google Scholar 

  92. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121

    CAS  PubMed  Google Scholar 

  93. Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R 93:1–49

    Google Scholar 

  94. Tokarev I, Minko S (2009) Stimuli-responsive hydrogel thin films. Soft Matter 5(3):511–524

    CAS  Google Scholar 

  95. White EM, Yatvin J, Grubbs JB III, Bilbrey JA, Locklin J (2013) Advances in smart materials: stimuli-responsive hydrogel thin films. J Polym Sci B 51(14):1084–1099

    CAS  Google Scholar 

  96. Peppas N, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    CAS  PubMed  Google Scholar 

  97. Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222

    CAS  Google Scholar 

  98. Kashyap N, Kumar N, Kumar MR (2005) Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carr Syst 22(2):107–149

    CAS  Google Scholar 

  99. Richter A (2009) Hydrogels for actuators. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators. Springer, Berlin, pp 221–248

    Google Scholar 

  100. Dai H, Chen Q, Qin H, Guan Y, Shen D, Hua Y, Tang Y, Xu J (2006) A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules 39(19):6584–6589

    CAS  Google Scholar 

  101. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym–Plast Technol Eng 50(14):1475–1486

    CAS  Google Scholar 

  102. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579

    CAS  PubMed  Google Scholar 

  103. Traitel T, Kost J (2004) pH-responsive hydrogels: swelling model. In: Biomaterials. Springer, New York, pp 29–43

  104. Xu L, Qiu L, Sheng Y, Sun Y, Deng L, Li X, Bradley M, Zhang R (2018) Biodegradable pH-responsive hydrogels for controlled dual-drug release. J Mater Chem B 6(3):510–517

    CAS  PubMed  Google Scholar 

  105. Bilia A, Carelli V, Di Colo G, Nannipieri E (1996) In vitro evaluation of a pH-sensitive hydrogel for control of GI drug delivery from silicone-based matrices. Int J Pharm 130(1):83–92

    CAS  Google Scholar 

  106. Hibbins AR, Kumar P, Choonara YE, Kondiah PP, Marimuthu T, Du Toit LC, Pillay V (2017) Design of a versatile pH-responsive hydrogel for potential oral delivery of gastric-sensitive bioactives. Polymers 9(10):474

    PubMed Central  Google Scholar 

  107. Patel A, Mequanint K (2011) Hydrogel biomaterials. In: Biomedical engineering—frontiers and challenges. IntechOpen, Rijeka. https://doi.org/10.5772/24856

  108. Jabari E, Nouzari S (1999) Synthesis of acrylic acid hydrogel by gamma-irradiation cross-linking of polyacrylic acid in aqueous solution. Polym J 8:263–270

    Google Scholar 

  109. Jianqi F, Lixia G (2002) PVA/PAA thermo-crosslinking hydrogel fiber: preparation and pH-sensitive properties in electrolyte solution. Eur Polym J 38(8):1653–1658

    Google Scholar 

  110. Li J, Li X, Ni X, Wang X, Li H, Leong KW (2006) Self-assembled supramolecular hydrogels formed by biodegradable PEO–PHB–PEO triblock copolymers and α-cyclodextrin for controlled drug delivery. Biomaterials 27(22):4132–4140

    CAS  PubMed  Google Scholar 

  111. Baker JP, Stephens DR, Blanch HW, Prausnitz JM (1992) Swelling equilibria for acrylamide-based polyampholyte hydrogels. Macromolecules 25(7):1955–1958

    CAS  Google Scholar 

  112. Han Z, Wang P, Mao G, Yin T, Zhong D, Yiming B, Hu X, Jia Z, Nian G, Qu S (2020) Dual pH-responsive hydrogel actuator for lipophilic drug delivery. ACS Appl Mater Interfaces 12(10):12010–12017

    CAS  PubMed  Google Scholar 

  113. Tabata Y (2009) Biomaterial technology for tissue engineering applications. J R Soc Interface 6(Suppl_3):S311–S324

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Shantha K, Harding D (2002) Synthesis and evaluation of sucrose-containing polymeric hydrogels for oral drug delivery. J Appl Polym Sci 84(14):2597–2604

    CAS  Google Scholar 

  115. Singh SK, Dhyani A, Juyal D (2017) Hydrogel: preparation, characterization and applications. Pharma Innov J 6(6):25–32

    CAS  Google Scholar 

  116. Ranganathan N, Joseph Bensingh R, Abdul Kader M, Nayak S (2018) Synthesis and properties of hydrogels prepared by various polymerization reaction systems. Springer, Cham, pp 1–25. https://doi.org/10.1007/978-3-319-76573-0_18-1

    Book  Google Scholar 

  117. Sannino A, Esposito A, Nicolais L, Del Nobile MA, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci Mater Med 11(4):247–253

    CAS  PubMed  Google Scholar 

  118. Sannino A, Madaghiele M, Conversano F, Mele G, Maffezzoli A, Netti P, Ambrosio L, Nicolais L (2004) Cellulose derivative—hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 5(1):92–96

    CAS  PubMed  Google Scholar 

  119. Sannino A, Pappadà S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46(25):11206–11212

    CAS  Google Scholar 

  120. Sannino A, Nicolais L (2005) Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels. Polymer 46(13):4676–4685

    CAS  Google Scholar 

  121. Tieke B (2014) Makromolekulare Chemie: Eine Einführung, 6th edn. Wiley, Hoboken

    Google Scholar 

  122. Ma S, Yu B, Pei X, Zhou F (2016) Structural hydrogels. Polymer 98:516–535

    CAS  Google Scholar 

  123. Gulrez SK, Al-Assaf S, Phillips GO (2015) Hydrogels: methods of preparation, characterisation and applications. Adv Res 6(2):105–121

    Google Scholar 

  124. Vickers NJ (2017) Animal communication: when I’m calling you, will you answer too? Curr Biol 27(14):R713–R715

    CAS  PubMed  Google Scholar 

  125. Ogata T, Nagayoshi K, Nagasako T, Kurihara S, Nonaka T (2006) Synthesis of hydrogel beads having phosphinic acid groups and its adsorption ability for lanthanide ions. React Funct Polym 66(6):625–633

    CAS  Google Scholar 

  126. Hennink W (2002) Novel cross linking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36

    CAS  PubMed  Google Scholar 

  127. Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Instrum Methods Phys Res B 151(1–4):56–64

    CAS  Google Scholar 

  128. Chauhan S, Harikumar S, Kanupriya (2012) Hydrogels, a smart drug delivery system. Int J Res Pharm Chem 2(3):604–615

  129. Vasquez JMG, Tumolva TP (2015) Synthesis and characterization of a self-assembling hydrogel from water-soluble cellulose derivatives and sodium hydroxide/thiourea solution. In: 11th Engineering research and development for technology conference, 2015, pp 60–65

  130. Zohourian MM, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J (Engl) 17:447–451

    Google Scholar 

  131. Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236

    Google Scholar 

  132. Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 22(6):511–521

    CAS  PubMed  Google Scholar 

  133. Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels… A review. Saudi Pharm J 24(5):554–559

    PubMed  Google Scholar 

  134. Kamoun EA, Kenawy E-RS, Tamer TM, El-Meligy MA, Eldin MSM (2015) Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arab J Chem 8(1):38–47

    CAS  Google Scholar 

  135. Chung HJ, Park TG (2009) Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 4(5):429–437

    CAS  Google Scholar 

  136. Vieira EF, Cestari AR, Airoldi C, Loh W (2008) Polysaccharide-based hydrogels: preparation, characterization, and drug interaction behaviour. Biomacromolecules 9(4):1195–1199

    CAS  PubMed  Google Scholar 

  137. Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314

    CAS  PubMed  Google Scholar 

  138. Aly AS (1998) Self-dissolving chitosan, I. Preparation, characterization and evaluation for drug delivery system. Die Angew Makromol Chem 259(1):13–18

    CAS  Google Scholar 

  139. Connell JJ (1975) The role of formaldehyde as a protein crosslinking agent acting during the frozen storage of cod. J Sci Food Agric 26(12):1925–1929

    CAS  Google Scholar 

  140. Liu SQ, Tay R, Khan M, Ee PLR, Hedrick JL, Yang YY (2010) Synthetic hydrogels for controlled stem cell differentiation. Soft Matter 6(1):67–81

    CAS  Google Scholar 

  141. Miyata T, Uragami T, Nakamae K (2002) Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev 54(1):79–98

    CAS  PubMed  Google Scholar 

  142. Imamura E, Sawatani O, Koyanagi H, Noishiki Y, Miyata T (1989) Epoxy compounds as a new cross-linking agent for porcine aortic leaflets: subcutaneous implant studies in rats. J Card Surg 4(1):50–57

    CAS  PubMed  Google Scholar 

  143. Xiao C (2013) Current advances of chemical and physical starch-based hydrogels. Starch-Stärke 65(1–2):82–88

    CAS  Google Scholar 

  144. Gulati N, Nagaich U, Sharma V, Khosa R (2011) Effect of polymer and cross linking agent on in vitro release of quercetin from microbeads. Asian J Pharm Life Sci. ISSN 2231:4423

  145. Zhu J (2010) Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials 31(17):4639–4656

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Ramamurthi A, Vesely I (2003) Ultraviolet light-induced modification of crosslinked hyaluronan gels. J Biomed Mater Res A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 66(2):317–329

    Google Scholar 

  147. Denizli BK, Can HK, Rzaev ZM, Guner A (2004) Preparation conditions and swelling equilibria of dextran hydrogels prepared by some crosslinking agents. Polymer 45(19):6431–6435

    CAS  Google Scholar 

  148. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007

    CAS  Google Scholar 

  149. Reddy N, Yang Y (2011) Potential of plant proteins for medical applications. Trends Biotechnol 29(10):490–498

    CAS  PubMed  Google Scholar 

  150. Funami T, Hiroe M, Noda S, Asai I, Ikeda S, Nishinari K (2007) Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocoll 21(4):617–629

    CAS  Google Scholar 

  151. Shen J, Zhou X, Wu W, Ma Y (2012) Improving paper strength by gelation of native starch and borax in the presence of fibers. BioResources 7(4):5542–5551

    Google Scholar 

  152. Glenn GM, Klamczynski A, Chiou BS, Orts WJ, Imam SH, Wood DF (2008) Temperature related structural changes in wheat and corn starch granules and their effects on gels and dry foam. Starch-Stärke 60(9):476–484

    CAS  Google Scholar 

  153. García-González C, Uy J, Alnaief M, Smirnova I (2012) Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method. Carbohydr Polym 88(4):1378–1386

    Google Scholar 

  154. Mehling T, Smirnova I, Guenther U, Neubert R (2009) Polysaccharide-based aerogels as drug carriers. J Non-Cryst Solids 355(50–51):2472–2479

    CAS  Google Scholar 

  155. Roy A, Bajpai J, Bajpai A (2009) Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydr Polym 76(2):222–231

    CAS  Google Scholar 

  156. Calinescu C, Mondovi B, Federico R, Ispas-Szabo P, Mateescu MA (2012) Carboxymethyl starch: chitosan monolithic matrices containing diamine oxidase and catalase for intestinal delivery. Int J Pharm 428(1–2):48–56

    CAS  PubMed  Google Scholar 

  157. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360

    CAS  Google Scholar 

  158. Kim TH, An DB, Oh SH, Kang MK, Song HH, Lee JH (2015) Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing–thawing method to investigate stem cell differentiation behaviors. Biomaterials 40:51–60

    CAS  PubMed  Google Scholar 

  159. Xiao C, Gao F, Gao Y (2010) Controlled preparation of physically crosslinked chitosan-g-poly (vinyl alcohol) hydrogel. J Appl Polym Sci 117(5):2946–2950

    CAS  Google Scholar 

  160. Lin Y, Wang L, Zhou J, Ye L, Hu H, Luo Z, Zhou L (2019) Surface modification of PVA hydrogel membranes with carboxybetaine methacrylate via PET-RAFT for anti-fouling. Polymer 162:80–90

    CAS  Google Scholar 

  161. Sreedhar B, Chattopadhyay D, Karunakar MSH, Sastry A (2006) Thermal and surface characterization of plasticized starch polyvinyl alcohol blends crosslinked with epichlorohydrin. J Appl Polym Sci 101(1):25–34

    CAS  Google Scholar 

  162. Xiao C, Yang M (2006) Controlled preparation of physical cross-linked starch-g-PVA hydrogel. Carbohydr Polym 64(1):37–40

    CAS  Google Scholar 

  163. Lu D, Xiao C, Xu S, Ye Y (2011) Tailor-made starch-based conjugates containing well-defined poly (vinyl acetate) and its derivative poly (vinyl alcohol). eXPRESS Polym Lett 5(6):535–544

    CAS  Google Scholar 

  164. Tan Y, Xu K, Liu C, Li Y, Lu C, Wang P (2012) Fabrication of starch-based nanospheres to stabilize pickering emulsion. Carbohydr Polym 88(4):1358–1363

    CAS  Google Scholar 

  165. Ebdon JR, Price D, Hunt BJ, Joseph P, Gao F, Milnes GJ, Cunliffe LK (2000) Flame retardance in some polystyrenes and poly (methyl methacrylate) s with covalently bound phosphorus-containing groups: initial screening experiments and some laser pyrolysis mechanistic studies. Polym Degrad Stab 69(3):267–277

    CAS  Google Scholar 

  166. Ishigaki T, Kawagoshi Y, Ike M, Fujita M (1999) Biodegradation of a polyvinyl alcohol–starch blend plastic film. World J Microbiol Biotechnol 15(3):321–327

    CAS  Google Scholar 

  167. Jayasekara R, Harding I, Bowater I, Christie G, Lonergan GT (2004) Preparation, surface modification and characterisation of solution cast starch PVA blended films. Polym Test 23(1):17–27

    CAS  Google Scholar 

  168. Bourtoom T, Chinnan MS (2008) Preparation and properties of rice starch–chitosan blend biodegradable film. LWT Food Sci Technol 41(9):1633–1641

    CAS  Google Scholar 

  169. Mani R, Bhattacharya M (2001) Properties of injection moulded blends of starch and modified biodegradable polyesters. Eur Polym J 37(3):515–526

    CAS  Google Scholar 

  170. Ratto JA, Stenhouse PJ, Auerbach M, Mitchell J, Farrell R (1999) Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system. Polymer 40(24):6777–6788

    CAS  Google Scholar 

  171. Jun CL (2000) Reactive blending of biodegradable polymers: PLA and starch. J Polym Environ 8(1):33–37

    Google Scholar 

  172. Shogren R, Doane W, Garlotta D, Lawton J, Willett J (2003) Biodegradation of starch/polylactic acid/poly (hydroxyester-ether) composite bars in soil. Polym Degrad Stab 79(3):405–411

    CAS  Google Scholar 

  173. Ke T, Sun XS (2003) Starch, poly (lactic acid), and poly (vinyl alcohol) blends. J Polym Environ 11(1):7–14

    CAS  Google Scholar 

  174. Wang N, Yu J, Ma X (2007) Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polym Int 56(11):1440–1447

    CAS  Google Scholar 

  175. Wang N, Yu J, Chang PR, Ma X (2008) Influence of formamide and water on the properties of thermoplastic starch/poly (lactic acid) blends. Carbohydr Polym 71(1):109–118

    CAS  Google Scholar 

  176. Li H, Huneault MA (2011) Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. J Appl Polym Sci 119(4):2439–2448

    CAS  Google Scholar 

  177. Park JW, Im SS, Kim SH, Kim YH (2000) Biodegradable polymer blends of poly (l-lactic acid) and gelatinized starch. Polym Eng Sci 40(12):2539–2550

    CAS  Google Scholar 

  178. Martin O, Avérous L (2001) Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219

    CAS  Google Scholar 

  179. Di Franco C, Cyras VP, Busalmen JP, Ruseckaite RA, Vázquez A (2004) Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polym Degrad Stab 86(1):95–103

    Google Scholar 

  180. Vertuccio L, Gorrasi G, Sorrentino A, Vittoria V (2009) Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym 75(1):172–179

    CAS  Google Scholar 

  181. Jang WY, Shin BY, Lee TJ, Narayan R (2007) Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. J Ind Eng Chem 13(3):457–464

    CAS  Google Scholar 

  182. Tudorachi N, Cascaval C, Rusu M, Pruteanu M (2000) Testing of polyvinyl alcohol and starch mixtures as biodegradable polymeric materials. Polym Test 19(7):785–799

    CAS  Google Scholar 

  183. Lawton J (1996) Effect of starch type on the properties of starch containing films. Carbohydr Polym 29(3):203–208

    CAS  Google Scholar 

  184. Haschke H, Tomka I, Keilbach A (1998) Systematic investigations on the biological degradability of packing material II. On the biodegradability of polyvinyl alcohol based films. Mon Chem 129(4):365–386

    CAS  Google Scholar 

  185. Zhai M, Zhao L, Yoshii F, Kume T (2004) Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydr Polym 57(1):83–88

    CAS  Google Scholar 

  186. Arvanitoyannis I, Biliaderis CG (1998) Physical properties of polyol-plasticized edible films made from sodium caseinate and soluble starch blends. Food Chem 62(3):333–342

    CAS  Google Scholar 

  187. Garcia MA, Martino MN, Zaritzky NE (1999) Edible starch films and coatings characterization: scanning electron microscopy, water vapor, and gas permeabilities. Scanning 21(5):348–353

    Google Scholar 

  188. Lourdin D, Della Valle G, Colonna P (1995) Influence of amylose content on starch films and foams. Carbohydr Polym 27(4):261–270

    CAS  Google Scholar 

  189. Mali S, Grossmann MVE (2003) Effects of yam starch films on storability and quality of fresh strawberries (Fragaria ananassa). J Agric Food Chem 51(24):7005–7011

    CAS  PubMed  Google Scholar 

  190. Lazaridou A, Biliaderis CG (2002) Thermophysical properties of chitosan, chitosan–starch and chitosan–pullulan films near the glass transition. Carbohydr Polym 48(2):179–190

    CAS  Google Scholar 

  191. Psomiadou E, Arvanitoyannis I, Yamamoto N (1996) Edible films made from natural resources; microcrystalline cellulose (MCC), methylcellulose (MC) and corn starch and polyols—Part 2. Carbohydr Polym 31(4):193–204

    CAS  Google Scholar 

  192. Suvorova AI, Tyukova IS, Trufanova EI (2000) Biodegradable starch-based polymeric materials. Russ Chem Rev 69(5):451

    CAS  Google Scholar 

  193. Cao X, Chen Y, Chang P, Muir A, Falk G (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2:502–510

    CAS  Google Scholar 

  194. Burkert S, Schmidt T, Gohs U, Dorschner H, Arndt K-F (2007) Cross-linking of poly (N-vinyl pyrrolidone) films by electron beam irradiation. Radiat Phys Chem 76(8–9):1324–1328

    CAS  Google Scholar 

  195. Maitra J, Shukla VK (2014) Cross-linking in hydrogels—a review. Am J Polym Sci 4(2):25–31

    Google Scholar 

  196. Bao J, Xing J, Phillips DL, Corke H (2003) Physical properties of octenyl succinic anhydride modified rice, wheat, and potato starches. J Agric Food Chem 51(8):2283–2287

    CAS  PubMed  Google Scholar 

  197. Spychaj T, Wilpiszewska K, Zdanowicz M (2013) Medium and high substituted carboxymethyl starch: synthesis, characterization and application. Starch-Stärke 65(1–2):22–33

    CAS  Google Scholar 

  198. Dragan ES, Apopei DF (2011) Synthesis and swelling behavior of pH-sensitive semi-interpenetrating polymer network composite hydrogels based on native and modified potatoes starch as potential sorbent for cationic dyes. Chem Eng J 178:252–263

    CAS  Google Scholar 

  199. Athawale V, Lele V (1998) Graft copolymerization onto starch. II. Grafting of acrylic acid and preparation of it’s hydrogels. Carbohydr Polym 35(1–2):21–27

    CAS  Google Scholar 

  200. Kiatkamjornwong S, Mongkolsawat K, Sonsuk M (2002) Synthesis and property characterization of cassava starch grafted poly [acrylamide-co-(maleic acid)] superabsorbent via γ-irradiation. Polymer 43(14):3915–3924

    CAS  Google Scholar 

  201. Chen L, Qiu X, Xie Z, Hong Z, Sun J, Chen X, Jing X (2006) Poly (l-lactide)/starch blends compatibilized with poly (l-lactide)-g-starch copolymer. Carbohydr Polym 65(1):75–80

    CAS  Google Scholar 

  202. Choi EJ, Kim CH, Park JK (1999) Structure–property relationship in PCL/starch blend compatibilized with starch-g-PCL copolymer. J Polym Sci B 37(17):2430–2438

    CAS  Google Scholar 

  203. Pourjavadi A, Harzandi A, Hosseinzadeh H (2004) Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polym J 40(7):1363–1370

    CAS  Google Scholar 

  204. Wen H, De Wijn J, Cui F, De Groot K (1998) Preparation of bioactive Ti6Al4V surfaces by a simple method. Biomaterials 19(1–3):215–221

    CAS  PubMed  Google Scholar 

  205. Patil NS, Li Y, Rethwisch DG, Dordick JS (1997) Sucrose diacrylate: a unique chemically and biologically degradable crosslinker for polymeric hydrogels. J Polym Sci A 35(11):2221–2229

    CAS  Google Scholar 

  206. Reddy N, Reddy R, Jiang Q (2015) Crosslinking biopolymers for biomedical applications. Trends Biotechnol 33(6):362–369

    CAS  PubMed  Google Scholar 

  207. Tessier FJ, Monnier VM, Sayre LM, Kornfield JA (2003) Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues. Biochem J 369(3):705–719

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Pal K, Banthia A, Majumdar D (2006) Preparation of transparent starch based hydrogel membrane with potential application as wound dressing. Trends Biomater Artif Organs 20(1):59–67

    Google Scholar 

  209. Blanes M, Gisbert M, Marco B, Bonet M, Gisbert J, Balart R (2010) Influence of glyoxal in the physical characterization of PVA nanofibers. Text Res J 80(14):1465–1472

    CAS  Google Scholar 

  210. Gahlawat P, Sen C, Das M (2015) Effect of molecular weight of polyvinyl alcohol on properties of starch film cross-linked with glutaraldehyde. Agric Eng Food Technol 2(1):12–16

    Google Scholar 

  211. Gadhave RV, Mahanwar PA, Gadekar PT (2019) Effect of glutaraldehyde on thermal and mechanical properties of starch and polyvinyl alcohol blends. Des Monomers Polym 22(1):164–170

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Grote C, Lazik W, Heinze T (2003) Tartaric acid starch ether: a novel biopolymer-based polyelectrolyte. Macromol Rapid Commun 24(16):927–931

    CAS  Google Scholar 

  213. Sangseethong K, Chatakanonda P, Sriroth K (2018) Superabsorbent hydrogels from rice starches with different amylose contents. Starch-Stärke 70(11–12):1700244

    Google Scholar 

  214. Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110(4):2453–2460

    CAS  Google Scholar 

  215. Xie X, Liu Q (2004) Development and physicochemical characterization of new resistant citrate starch from different corn starches. Starch-Stärke 56(8):364–370

    CAS  Google Scholar 

  216. Hashim K, Dahlan K, Noordin N, Yoshii F (2000) Hydrogel of sago starch/water-soluble polymers by electron beam irradiation technique. In: International symposium on radiation technology in emerging industrial applications. International Atomic Energy Agency (IAEA)-SM-365

  217. Geresh S, Gilboa Y, Peisahov-Korol J, Gdalevsky G, Voorspoels J, Remon JP, Kost J (2002) Preparation and characterization of bioadhesive grafted starch copolymers as platforms for controlled drug delivery. J Appl Polym Sci 86(5):1157–1162

    CAS  Google Scholar 

  218. Zhai M, Yoshii F, Kume T, Hashim K (2002) Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydr Polym 50(3):295–303

    CAS  Google Scholar 

  219. Yoshii F, Zhao L, Wach RA, Nagasawa N, Mitomo H, Kume T (2003) Hydrogels of polysaccharide derivatives crosslinked with irradiation at paste-like condition. Nucl Instrum Methods Phys Res B 208:320–324

    CAS  Google Scholar 

  220. Kaur I, Devi S (2014) Synthesis and characterization of acrylamide grafted cross-linked corn starch and its use in water remedial applications. Trends Carbohydr Res 6(2):17–33

    Google Scholar 

  221. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11(1–2):1–35

    CAS  Google Scholar 

  222. Rosiak J, Ulański P (1999) Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat Phys Chem 55(2):139–151

    CAS  Google Scholar 

  223. Lv X, Song W, Ti Y, Qu L, Zhao Z, Zheng H (2013) Gamma radiation-induced grafting of acrylamide and dimethyl diallyl ammonium chloride onto starch. Carbohydr Polym 92(1):388–393

    CAS  PubMed  Google Scholar 

  224. Geresh S, Gdalevsky GY, Gilboa I, Voorspoels J, Remon JP, Kost J (2004) Bioadhesive grafted starch copolymers as platforms for peroral drug delivery: a study of theophylline release. J Control Release 94(2–3):391–399

    CAS  PubMed  Google Scholar 

  225. Abd El-Mohdy H, Hegazy E, El-Nesr E, El-Wahab M (2016) Synthesis, characterization and properties of radiation-induced Starch/(EG-co-MAA) hydrogels. Arab J Chem 9:S1627–S1635

    CAS  Google Scholar 

  226. Huang L, Xiao C (2013) Formation of a tunable starch-based network by in situ incorporation of mercapto groups and a subsequent thiol-ene click reaction. Polym Int 62(3):427–431

    CAS  Google Scholar 

  227. Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49(9):1540–1573

    CAS  Google Scholar 

  228. Kade MJ, Burke DJ, Hawker CJ (2010) The power of thiol-ene chemistry. J Polym Sci A 48(4):743–750

    CAS  Google Scholar 

  229. Peppas NA, Berner RE Jr (1980) Proposed method of intracopdal injection and gelation of poly (vinyl alcohol) solution in vocal cords: polymer considerations. Biomaterials 3:158–162

    Google Scholar 

  230. Dai W, Barbari T (1999) Hydrogel membranes with mesh size asymmetry based on the gradient crosslinking of poly (vinyl alcohol). J Membr Sci 156(1):67–79

    CAS  Google Scholar 

  231. Jameela S, Jayakrishnan A (1995) Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 16(10):769–775

    CAS  PubMed  Google Scholar 

  232. Gehrke SH, Uhden LH, McBride JF (1998) Enhanced loading and activity retention of bioactive proteins in hydrogel delivery systems. J Control Release 55(1):21–33

    CAS  PubMed  Google Scholar 

  233. Coviello T, Grassi M, Rambone G, Santucci E, Carafa M, Murtas E, Riccieri FM, Alhaique F (1999) Novel hydrogel system from scleroglucan: synthesis and characterization. J Control Release 60(2–3):367–378

    CAS  PubMed  Google Scholar 

  234. Giammona G, Pitarresi G, Cavallaro G, Spadaro G (1999) New biodegradable hydrogels based on an acryloylated polyaspartamide cross-linked by gamma irradiation. J Biomater Sci Polym Ed 10(9):969–987

    CAS  PubMed  Google Scholar 

  235. Minhas MU, Ahmad M, Ali L, Sohail M (2013) Synthesis of chemically cross-linked polyvinyl alcohol-co-poly (methacrylic acid) hydrogels by copolymerization; a potential graft-polymeric carrier for oral delivery of 5-fluorouracil. DARU J Pharm Sci 21(1):1–9

    Google Scholar 

  236. Ahmed A, Niazi MBK, Jahan Z, Samin G, Pervaiz E, Hussain A, Mehran MT (2020) Enhancing the thermal, mechanical and swelling properties of PVA/starch nanocomposite membranes incorporating gC3N4. J Polym Environ 28(1):100–115

    CAS  Google Scholar 

  237. Sadeghi M (2011) Synthesis of starch-g-poly (acrylic acid-co-2-hydroxy ethyl methacrylate) as a potential pH-sensitive hydrogel-based drug delivery system. Turk J Chem 35(5):723–733

    CAS  Google Scholar 

  238. Kaith BS, Jindal R, Mittal H, Kumar K (2012) Synthesis, characterization, and swelling behavior evaluation of hydrogels based on gum ghatti and acrylamide for selective absorption of saline from different petroleum fraction–saline emulsions. J Appl Polym Sci 124(3):2037–2047

    CAS  Google Scholar 

  239. Farag AM, Sokker HH, Zayed EM, Eldien FAN, Abd Alrahman NM (2018) Removal of hazardous pollutants using bifunctional hydrogel obtained from modified starch by grafting copolymerization. Int J Biol Macromol 120:2188–2199

    CAS  PubMed  Google Scholar 

  240. Weisenhorn AL, Khorsandi M, Kasas S, Gotzos V, Butt H-J (1993) Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4(2):106

    CAS  Google Scholar 

  241. Kaith B, Kumar K (2007) Selective absorption of water from different oil–water emulsions with Psy-cl-poly (AAm) synthesized using irradiation copolymerization method. Bull Mater Sci 30(4):387–391

    CAS  Google Scholar 

  242. Chin SF, Romainor ANB, Pang SC, Lihan S (2019) Antimicrobial starch-citrate hydrogel for potential applications as drug delivery carriers. J Drug Deliv Sci Technol 54:101239

    CAS  Google Scholar 

  243. Batool S, Hussain Z, Niazi MBK, Liaqat U, Afzal M (2019) Biogenic synthesis of silver nanoparticles and evaluation of physical and antimicrobial properties of Ag/PVA/starch nanocomposites hydrogel membranes for wound dressing application. J Drug Deliv Sci Technol 52:403–414

    CAS  Google Scholar 

  244. Bursali EA, Coskun S, Kizil M, Yurdakoc M (2011) Synthesis, characterization and in vitro antimicrobial activities of boron/starch/polyvinyl alcohol hydrogels. Carbohydr Polym 83(3):1377–1383

    CAS  Google Scholar 

  245. Kaith B, Jindal R, Mittal H, Kumar K, Nagla K (2010) Synthesis and characterization of Gum ghatti based electro-sensitive smart networks. Trends Carbohydr Res 2:35–44

    CAS  Google Scholar 

  246. Bo J (1992) Study on PVA hydrogel crosslinked by epichlorohydrin. J Appl Polym Sci 46(5):783–786

    Google Scholar 

  247. Bialik-Wąs K, Tyliszczak B, Edyta W, Pielichowski K (2013) Preparation of innovative hydrogel wound dressings based on poly (acrylic acid). Chemik 67(2):99–104

    Google Scholar 

  248. Pal K, Banthia AK, Majumdar DK (2007) Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. AAPS PharmSciTech 8(1):142–146

    Google Scholar 

  249. Singh B, Sharma S, Dhiman A (2013) Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. Int J Pharm 457(1):82–91

    CAS  PubMed  Google Scholar 

  250. Annabi N, Rana D, Sani ES, Portillo-Lara R, Gifford JL, Fares MM, Mithieux SM, Weiss AS (2017) Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomaterials 139:229–243

    CAS  PubMed  Google Scholar 

  251. Aziz MA, Cabral JD, Brooks HJ, Moratti SC, Hanton LR (2012) Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use. Antimicrob Agents Chemother 56(1):280–287

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Mondal MI, Haque MO (2019) Cellulosic hydrogels: a greener solution of sustainability. In: Cellulose-based superabsorbent hydrogels. Springer, Cham, pp 3–35

  253. Abd El-Mohdy H, Ghanem S (2009) Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation. J Polym Res 16(1):1–10

    CAS  Google Scholar 

  254. Kaith B, Kumar K (2007) In vacuum preparation of psy-cl-poly (AAm) superabsorbent and its applications in oil-industry. E-Polymers. https://doi.org/10.1515/epoly.2007.7.1.14

    Article  Google Scholar 

  255. Kaith B, Kumar K (2008) In vacuum synthesis of psyllium and acrylic acid based hydrogels for selective water absorption from different oil–water emulsions. Desalination 229(1–3):331–341

    CAS  Google Scholar 

  256. Marques A, Reis R, Hunt J (2002) The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials 23(6):1471–1478

    CAS  PubMed  Google Scholar 

  257. Mendes SC, Reis R, Bovell YP, Cunha A, van Blitterswijk CA, de Bruijn JD (2001) Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study. Biomaterials 22(14):2057–2064

    CAS  PubMed  Google Scholar 

  258. Azevedo HS, Gama FM, Reis RL (2003) In vitro assessment of the enzymatic degradation of several starch based biomaterials. Biomacromolecules 4(6):1703–1712

    CAS  PubMed  Google Scholar 

  259. Defaye J, Wong E (1986) Structural studies of gum Arabic, the exudate polysaccharide from Acacia senegal. Carbohydr Res 150(1):221–231

    CAS  Google Scholar 

  260. Reddy SM, Sinha VR, Reddy DS (1999) Novel oral colon-specific drug delivery systems for pharmacotherapy of peptide and nonpeptide drugs. Drugs Today 35(7):537–580

    CAS  Google Scholar 

  261. Sinha VR, Kumria R (2001) Polysaccharides in colon-specific drug delivery. Int J Pharm 224(1–2):19–38

    CAS  PubMed  Google Scholar 

  262. Simoes S, Figueiras A, Veiga F (2012) Modular hydrogels for drug delivery. J Biomater Nanobiotechnol 3:185–199

    CAS  Google Scholar 

  263. Boesel LF, Mano JF, Reis RL (2004) Optimization of the formulation and mechanical properties of starch based partially degradable bone cements. J Mater Sci Mater Med 15(1):73–83

    CAS  PubMed  Google Scholar 

  264. Pal K, Banthia A, Majumdar D (2006) Starch based hydrogel with potential biomedical application as artificial skin. Afr J Biomed Res 9(1):23–29

    Google Scholar 

  265. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12(5):1387–1408

    PubMed  Google Scholar 

  266. Jhon MS, Andrade JD (1973) Water and hydrogels. J Biomed Mater Res 7(6):509–522

    CAS  PubMed  Google Scholar 

  267. Costa-Pinto AR, Reis RL, Neves NM (2011) Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng B 17(5):331–347

    CAS  Google Scholar 

  268. Ito A, Mase A, Takizawa Y, Shinkai M, Honda H, Hata K-I, Ueda M, Kobayashi T (2003) Transglutaminase-mediated gelatin matrices incorporating cell adhesion factors as a biomaterial for tissue engineering. J Biosci Bioeng 95(2):196–199

    CAS  PubMed  Google Scholar 

  269. Salgado A, Coutinho OP, Reis RL (2004) Novel starch-based scaffolds for bone tissue engineering: cytotoxicity, cell culture, and protein expression. Tissue Eng 10(3–4):465–474

    CAS  PubMed  Google Scholar 

  270. Kamoun EA (2016) N-succinyl chitosan–dialdehyde starch hybrid hydrogels for biomedical applications. J Adv Res 7(1):69–77

    CAS  PubMed  Google Scholar 

  271. Malafaya PB, Silva GA, Reis RL (2007) Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233

    CAS  PubMed  Google Scholar 

  272. Silva G, Costa F, Neves N, Coutinho O, Dias ACP, Reis R (2005) Entrapment ability and release profile of corticosteroids from starch-based microparticles. J Biomed Mater Res A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 73(2):234–243

    CAS  Google Scholar 

  273. Santos MI, Fuchs S, Gomes ME, Unger RE, Reis RL, Kirkpatrick CJ (2007) Response of micro- and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering. Biomaterials 28(2):240–248

    CAS  PubMed  Google Scholar 

  274. Salgado A, Coutinho OP, Reis RL, Davies J (2007) In vivo response to starch-based scaffolds designed for bone tissue engineering applications. J Biomed Mater Res A 80(4):983–989

    CAS  PubMed  Google Scholar 

  275. Lu L, Mikos AG (1996) The importance of new processing techniques in tissue engineering. MRS Bull 21(11):28–32

    CAS  PubMed  Google Scholar 

  276. Malafaya PB, Gomes ME, Salgado AJ, Reis RL (2003) Polymer based scaffolds and carriers for bioactive agents from different natural origin materials. In: Tissue engineering, stem cells, and gene therapies. Springer, New York, pp 201–233

  277. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Preparation of poly (glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 27(2):183–189

    CAS  PubMed  Google Scholar 

  278. Gomes ME, Ribeiro A, Malafaya P, Reis R, Cunha A (2001) A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials 22(9):883–889

    CAS  PubMed  Google Scholar 

  279. Langer R (1999) Selected advances in drug delivery and tissue engineering. J Control Release 62(1–2):7–11

    CAS  PubMed  Google Scholar 

  280. Agrawal C, Athanasiou K, Heckman J (1997) Biodegradable PLA-PGA polymers for tissue engineering in orthopaedics. In: Materials Science Forum, 1997. Trans Tech Publ, pp 115–128

  281. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly (l-lactic acid) foams. Polymer 35(5):1068–1077

    CAS  Google Scholar 

  282. Ribeiro A, Malafaya P, Reis R (1999) Microwave based methodologies for the production of polymeric and ceramic porous architectures to be used in bone replacement, tissue engineering and drug delivery. In: 25th Annual meeting of the Society for Biomaterials, Providence, USA, 1999, p 555

  283. Noè C, Tonda-Turo C, Chiappone A, Sangermano M, Hakkarainen M (2020) Light processable starch hydrogels. Polymers 12(6):1359

    PubMed Central  Google Scholar 

  284. Ngoenkam J, Faikrua A, Yasothornsrikul S, Viyoch J (2010) Potential of an injectable chitosan/starch/β-glycerol phosphate hydrogel for sustaining normal chondrocyte function. Int J Pharm 391(1–2):115–124

    CAS  PubMed  Google Scholar 

  285. Gomes ME, Sikavitsas VI, Behravesh E, Reis RL, Mikos AG (2003) Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J Biomed Mater Res A Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 67(1):87–95

    Google Scholar 

  286. Chen L-G, Liu Z-L, Zhuo R-X (2005) Synthesis and properties of degradable hydrogels of konjac glucomannan grafted acrylic acid for colon-specific drug delivery. Polymer 46(16):6274–6281

    CAS  Google Scholar 

  287. Liu C, Gan X, Chen Y (2011) A novel pH-sensitive hydrogels for potential colon-specific drug delivery: characterization and in vitro release studies. Starch-Stärke 63(8):503–511

    CAS  Google Scholar 

  288. Ali AE-H, AlArifi A (2009) Characterization and in vitro evaluation of starch based hydrogels as carriers for colon specific drug delivery systems. Carbohydr Polym 78(4):725–730

    Google Scholar 

  289. Kidane A, Bhatt PP (2005) Recent advances in small molecule drug delivery. Curr Opin Chem Biol 9(4):347–351

    CAS  PubMed  Google Scholar 

  290. Reis AV, Guilherme MR, Moia TA, Mattoso LH, Muniz EC, Tambourgi EB (2008) Synthesis and characterization of a starch-modified hydrogel as potential carrier for drug delivery system. J Polym Sci A 46(7):2567–2574

    CAS  Google Scholar 

  291. Shalviri A, Liu Q, Abdekhodaie MJ, Wu XY (2010) Novel modified starch–xanthan gum hydrogels for controlled drug delivery: synthesis and characterization. Carbohydr Polym 79(4):898–907

    CAS  Google Scholar 

  292. Dave A, Mehta M, Aminabhavi T, Kulkarni A, Soppimath K (1999) A review on controlled release of nitrogen fertilizers through polymeric membrane devices. Polym–Plast Technol Eng 38(4):675–711

    CAS  Google Scholar 

  293. Kakoulides EP, Valkanas GN (1994) Modified rosin-paraffin wax resins as controlled delivery systems for fertilizers. 1. Fabrication parameters governing fertilizer release in water. Ind Eng Chem Res 33(6):1623–1630

    CAS  Google Scholar 

  294. Teixeira MA, Paterson WJ, Dunn EJ, Li Q, Hunter BK, Goosen MF (1990) Assessment of chitosan gels for the controlled release of agrochemicals. Ind Eng Chem Res 29(7):1205–1209

    CAS  Google Scholar 

  295. Jarosiewicz A, Tomaszewska M (2003) Controlled-release NPK fertilizer encapsulated by polymeric membranes. J Agric Food Chem 51(2):413–417

    CAS  PubMed  Google Scholar 

  296. Novillo J, Rico MI, Alvarez JM (2001) Controlled release of manganese into water from coated experimental fertilizers. Laboratory characterization. J Agric Food Chem 49(3):1298–1303

    CAS  PubMed  Google Scholar 

  297. Ge J, Wu R, Shi X, Yu H, Wang M, Li W (2002) Biodegradable polyurethane materials from bark and starch. II. Coating material for controlled-release fertilizer. J Appl Polym Sci 86(12):2948–2952

    CAS  Google Scholar 

  298. Mohana Raju K, Padmanabha Raju M (2001) Synthesis of novel superabsorbing copolymers for agricultural and horticultural applications. Polym Int 50(8):946–951

    Google Scholar 

  299. Guo M, Liu M, Zhan F, Wu L (2005) Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent and moisture preservation. Ind Eng Chem Res 44(12):4206–4211

    CAS  Google Scholar 

  300. Dilara P, Briassoulis D (2000) Degradation and stabilization of low-density polyethylene films used as greenhouse covering materials. J Agric Eng Res 76(4):309–321

    Google Scholar 

  301. Kumbar SG, Kulkarni AR, Dave AM, Aminabhavi TM (2001) Encapsulation efficiency and release kinetics of solid and liquid pesticides through urea formaldehyde crosslinked starch, guar gum, and starch+ guar gum matrices. J Appl Polym Sci 82(11):2863–2866

    CAS  Google Scholar 

  302. Niu Y, Li H (2012) Controlled release of urea encapsulated by starch-g-poly (vinyl acetate). Ind Eng Chem Res 51(38):12173–12177

    CAS  Google Scholar 

  303. Mogul MG, Akin H, Hasirci N, Trantolo DJ, Gresser JD, Wise DL (1996) Controlled release of biologically active agents for purposes of agricultural crop management. Resour Conserv Recycl 16(1–4):289–320

    Google Scholar 

  304. Ravier I, Haouisee E, Clément M, Seux R, Briand O (2005) Field experiments for the evaluation of pesticide spray-drift on arable crops. Pest Manag Sci Former Pestic Sci 61(8):728–736

    CAS  Google Scholar 

  305. Fernández-Pérez M, Villafranca-Sanchez M, Gonzalez-Pradas E, Flores-Cespedes F (1999) Controlled release of diuron from an alginate–bentonite formulation: water release kinetics and soil mobility study. J Agric Food Chem 47(2):791–798

    PubMed  Google Scholar 

  306. Dailey OD (2004) Volatilization of alachlor from polymeric formulations. J Agric Food Chem 52(22):6742–6746

    CAS  PubMed  Google Scholar 

  307. Chevillard A, Angellier-Coussy H, Guillard V, Gontard N, Gastaldi E (2012) Controlling pesticide release via structuring agropolymer and nanoclays based materials. J Hazard Mater 205:32–39

    PubMed  Google Scholar 

  308. Singh B, Sharma D, Gupta A (2008) In vitro release dynamics of thiram fungicide from starch and poly (methacrylic acid)-based hydrogels. J Hazard Mater 154(1–3):278–286

    CAS  Google Scholar 

  309. Celis R, Facenda G, Hermosin MC, Cornejo J (2005) Assessing factors influencing the release of hexazinone from clay-based formulations. Int J Environ Anal Chem 85(15):1153–1164

    CAS  Google Scholar 

  310. Singh B, Sharma D, Kumar R, Gupta A (2009) Controlled release of the fungicide thiram from starch–alginate–clay based formulation. Appl Clay Sci 45(1–2):76–82

    CAS  Google Scholar 

  311. Rychter P, Lewicka K, Pastusiak M, Domański M, Dobrzyński P (2019) PLGA–PEG terpolymers as a carriers of bioactive agents, influence of PEG blocks content on degradation and release of herbicides into soil. Polym Degrad Stab 161:95–107

    CAS  Google Scholar 

  312. Chen P, Zhang WA, Luo W, Ye F (2004) Synthesis of superabsorbent polymers by irradiation and their applications in agriculture. J Appl Polym Sci 93(4):1748–1755

    CAS  Google Scholar 

  313. Muller J, González-Martínez C, Chiralt A (2017) Combination of poly (lactic) acid and starch for biodegradable food packaging. Materials 10(8):952

    PubMed Central  Google Scholar 

  314. Zhao R, Torley P, Halley PJ (2008) Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. J Mater Sci 43(9):3058–3071

    CAS  Google Scholar 

  315. Khan B, Bilal Khan Niazi M, Samin G, Jahan Z (2017) Thermoplastic starch: a possible biodegradable food packaging material—a review. J Food Process Eng 40(3):e12447

    Google Scholar 

  316. O’Grady M, Monahan F, Bailey J, Allen P, Buckley D, Keane M (1998) Colour-stabilising effect of muscle vitamin E in minced beef stored in high oxygen packs. Meat Sci 50(1):73–80

    CAS  PubMed  Google Scholar 

  317. Ortega-Toro R, Jiménez A, Talens P, Chiralt A (2014) Effect of the incorporation of surfactants on the physical properties of corn starch films. Food Hydrocoll 38:66–75

    CAS  Google Scholar 

  318. Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Technol 5(6):2058–2076

    Google Scholar 

  319. Cano A, Cháfer M, Chiralt A, González-Martínez C (2016) Development and characterization of active films based on starch–PVA, containing silver nanoparticles. Food Packag Shelf Life 10:16–24

    Google Scholar 

  320. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474

    CAS  Google Scholar 

  321. López OV, García MA, Zaritzky NE (2008) Film forming capacity of chemically modified corn starches. Carbohydr Polym 73(4):573–581

    PubMed  Google Scholar 

  322. Pagella C, Spigno G, De Faveri D (2002) Characterization of starch based edible coatings. Food Bioprod Process 80(3):193–198

    CAS  Google Scholar 

  323. Burfoot D, Middleton K (2009) Effects of operating conditions of high pressure washing on the removal of biofilms from stainless steel surfaces. J Food Eng 90(3):350–357

    Google Scholar 

  324. Flores S, Haedo AS, Campos C, Gerschenson L (2007) Antimicrobial performance of potassium sorbate supported in tapioca starch edible films. Eur Food Res Technol 225(3–4):375–384

    CAS  Google Scholar 

  325. Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643

    CAS  Google Scholar 

  326. Liu F, Qin B, He L, Song R (2009) Novel starch/chitosan blending membrane: antibacterial, permeable and mechanical properties. Carbohydr Polym 78(1):146–150

    CAS  Google Scholar 

  327. Jyothi AN, Moorthy SN, Rajasekharan KN (2006) Effect of cross-linking with epichlorohydrin on the properties of cassava (Manihot esculenta Crantz) starch. Starch-Stärke 58(6):292–299

    CAS  Google Scholar 

  328. Zohuriaan-Mehr M, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45(21):5711–5735

    CAS  Google Scholar 

  329. Schoeck Jr VE, Fuller EE, Dubnik A (2002) Water-blocked telecommunications cables, and water-blocking yarns usefully employed in same. Google Patents

  330. Gruhn JD, Shows PD, Fairgrieve SP, Watts JC (2001) Process for the preparation of nonwoven water blocking tapes and their use in cable manufacture. Google Patents

  331. González K, García-Astrain C, Santamaria-Echart A, Ugarte L, Avérous L, Eceiza A, Gabilondo N (2018) Starch/graphene hydrogels via click chemistry with relevant electrical and antibacterial properties. Carbohydr Polym 202:372–381

    Google Scholar 

  332. Prabhakar R, Kumar D (2019) Studies on polyacrylate-starch/polyaniline conducting hydrogel. Curr Smart Mater 4(1):36–44

    Google Scholar 

  333. Akin F, Spraker M, Aly R, Leyden J, Raynor W, Landin W (2001) Effects of breathable disposable diapers: reduced prevalence of Candida and common diaper dermatitis. Pediatr Dermatol 18(4):282–290

    CAS  PubMed  Google Scholar 

  334. Marcì G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8(5):439–444

    Google Scholar 

  335. Sannino A, Mensitieri G, Nicolais L (2004) Water and synthetic urine sorption capacity of cellulose-based hydrogels under a compressive stress field. J Appl Polym Sci 91(6):3791–3796

    CAS  Google Scholar 

  336. Bashari A, Rouhani Shirvan A, Shakeri M (2018) Cellulose-based hydrogels for personal care products. Polym Adv Technol 29(12):2853–2867

    CAS  Google Scholar 

  337. Haque MO, Mondal MIH (2019) Cellulose‐based hydrogel for personal hygiene applications. In: Cellulose‐based superabsorbent hydrogels. Springer, Switzerland, pp 1339–1359

  338. Ma J, Li X, Bao Y (2015) Advances in cellulose-based superabsorbent hydrogels. RSC Adv 5(73):59745–59757

    CAS  Google Scholar 

  339. Kabir SF, Sikdar PP, Haque B, Bhuiyan MR, Ali A, Islam M (2018) Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog Biomater 7(3):153–174

    CAS  PubMed  PubMed Central  Google Scholar 

  340. Alam MN, Christopher LP (2018) Natural cellulose-chitosan cross-linked superabsorbent hydrogels with superior swelling properties. ACS Sustain Chem Eng 6(7):8736–8742

    CAS  Google Scholar 

  341. Onofrei M, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Polymer science: research advances, practical applications educational aspects, pp 108–120

  342. Reshma G, Reshmi C, Nair SV, Menon D (2020) Superabsorbent sodium carboxymethyl cellulose membranes based on a new cross-linker combination for female sanitary napkin applications. Carbohydr Polym 248:116763

    CAS  Google Scholar 

  343. Barman A, Katkar PM, Asagekar SD (2018) Natural and sustainable raw materials for sanitary napkin. Man Made Text India 46(12):408–411

    Google Scholar 

  344. Bruce AH, Fogg GJ, Diedling FJ, Hammons JL (2003) System for selecting feminine hygiene products. Google Patents

  345. Ilankoon I, Ghorbani Y, Chong MN, Herath G, Moyo T, Petersen J (2018) E-waste in the international context—a review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Manag 82:258–275

    CAS  PubMed  Google Scholar 

  346. Majid A, Argue S (2001) Remediation of heavy metal contaminated solid wastes using agglomeration techniques. Miner Eng 14(11):1513–1525

    CAS  Google Scholar 

  347. Chantawong V, Harvey N, Bashkin V (2003) Comparison of heavy metal adsorptions by Thai kaolin and ballclay. Water Air Soil Pollut 148(1–4):111–125

    CAS  Google Scholar 

  348. Hageluken C (2006) Improving metal returns and eco-efficiency in electronics recycling—a holistic approach for interface optimisation between pre-processing and integrated metals smelting and refining. In: Proceedings of the 2006 IEEE international symposium on electronics and the environment, 2006. IEEE, pp 218–223

  349. Duffert C, Brune M, Prout K (2009) Background document on exposures to e-waste. World Health Organization, Geneva

    Google Scholar 

  350. Tsydenova O, Bengtsson M (2011) Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag 31(1):45–58

    CAS  PubMed  Google Scholar 

  351. Leyva-Ramos R, Rangel-Mendez J, Mendoza-Barron J, Fuentes-Rubio L, Guerrero-Coronado R (1997) Adsorption of cadmium(II) from aqueous solution onto activated carbon. Water Sci Technol 35(7):205–211

    CAS  Google Scholar 

  352. Shim J-W, Park S-J, Ryu S-K (2001) Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon 39(11):1635–1642

    CAS  Google Scholar 

  353. Ouki S, Neufeld R (1997) Use of activated carbon for the recovery of chromium from industrial wastewaters. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 70(1):3–8

    CAS  Google Scholar 

  354. Monser L, Adhoum N (2002) Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep Purif Technol 26(2–3):137–146

    CAS  Google Scholar 

  355. Liu Z, Zhao C, Wang P, Zheng H, Sun Y, Dionysiou DD (2018) Removal of carbamazepine in water by electro-activated carbon fiber-peroxydisulfate: comparison, optimization, recycle, and mechanism study. Chem Eng J 343:28–36

    CAS  Google Scholar 

  356. Zhang J, Lin T, Chen W (2017) Micro-flocculation/sedimentation and ozonation for controlling ultrafiltration membrane fouling in recycling of activated carbon filter backwash water. Chem Eng J 325:160–168

    CAS  Google Scholar 

  357. Singh B, Chauhan G, Bhatt S, Kumar K (2006) Metal ion sorption and swelling studies of psyllium and acrylic acid based hydrogels. Carbohydr Polym 64(1):50–56

    CAS  Google Scholar 

  358. Lee J, Kumar R, Rozman H, Azemi B (2005) Pasting, swelling and solubility properties of UV initiated starch-graft-poly (AA). Food Chem 91(2):203–211

    CAS  Google Scholar 

  359. Güçlü G, Al E, Emik S, İyim TB, Özgümüş S, Özyürek M (2010) Removal of Cu2+ and Pb2+ ions from aqueous solutions by starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels. Polym Bull 65(4):333–346

    Google Scholar 

  360. Hashem A, Ahmad F, Fahad R (2008) Application of some starch hydrogels for the removal of mercury(II) ions from aqueous solutions. Adsorpt Sci Technol 26(8):563–579

    CAS  Google Scholar 

  361. Qi X, Wei W, Shen J, Dong W (2019) Salecan polysaccharide-based hydrogels and their applications: a review. J Mater Chem B 7(16):2577–2587

    CAS  PubMed  Google Scholar 

  362. Ekebafe L, Ogbeifun D, Okieimen F (2012) Removal of heavy metals from aqueous media using native cassava starch hydrogel. Afr J Environ Sci Technol 6(7):275–282

    CAS  Google Scholar 

  363. Pour ZS, Ghaemy M (2015) Removal of dyes and heavy metal ions from water by magnetic hydrogel beads based on poly (vinyl alcohol)/carboxymethyl starch-g-poly (vinyl imidazole). RSC Adv 5(79):64106–64118

    Google Scholar 

  364. Abdel-Aal S, Gad Y, Dessouki A (2006) Use of rice straw and radiation-modified maize starch/acrylonitrile in the treatment of wastewater. J Hazard Mater 129(1–3):204–215

    CAS  PubMed  Google Scholar 

  365. Dai M, Liu Y, Ju B, Tian Y (2019) Preparation of thermoresponsive alginate/starch ether composite hydrogel and its application to the removal of Cu(II) from aqueous solution. Bioresour Technol 294:122192

    CAS  PubMed  Google Scholar 

  366. Chauhan K, Chauhan GS, Ahn J-H (2010) Novel polycarboxylated starch-based sorbents for Cu2+ ions. Ind Eng Chem Res 49(6):2548–2556

    CAS  Google Scholar 

  367. Yu C, Tang X, Liu S, Yang Y, Shen X, Gao C (2018) Laponite crosslinked starch/polyvinyl alcohol hydrogels by freezing/thawing process and studying their cadmium ion absorption. Int J Biol Macromol 117:1–6

    PubMed  Google Scholar 

  368. Chauhan GS, Jaswal SC, Verma M (2006) Post functionalization of carboxymethylated starch and acrylonitrile based networks through amidoximation for use as ion sorbents. Carbohydr Polym 66(4):435–443

    CAS  Google Scholar 

  369. Wang Q, Yang Z (2016) Industrial water pollution, water environment treatment, and health risks in China. Environ Pollut 218:358–365

    CAS  PubMed  Google Scholar 

  370. Jana S, Pradhan S, Tripathy T (2018) Poly (N, N-dimethylacrylamide-co-acrylamide) grafted hydroxyethyl cellulose hydrogel: a useful Congo red dye remover. J Polym Environ 26(7):2730–2747

    CAS  Google Scholar 

  371. Ngwabebhoh FA, Gazi M, Oladipo AA (2016) Adsorptive removal of multi-azo dye from aqueous phase using a semi-IPN superabsorbent chitosan-starch hydrogel. Chem Eng Res Des 112:274–288

    CAS  Google Scholar 

  372. Christie RM (2007) Environmental aspects of textile dyeing. Woodhead Publishing, Cambridge

    Google Scholar 

  373. Nguyen TA, Juang R-S (2013) Treatment of waters and wastewaters containing sulfur dyes: a review. Chem Eng J 219:109–117

    CAS  Google Scholar 

  374. Saini RD (2017) Textile organic dyes: polluting effects and elimination methods from textile waste water. Int J Chem Eng Res 9:121–136

    Google Scholar 

  375. Rani B, Maheshwari R, Yadav R, Pareek D, Sharma A (2013) Resolution to provide safe drinking water for sustainability of future perspectives. Res J Chem Environ Sci 1:50–54

    Google Scholar 

  376. Seow TW, Lim CK (2016) Removal of dye by adsorption: a review. Int J Appl Eng Res 11(4):2675–2679

    Google Scholar 

  377. Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130

    CAS  PubMed  Google Scholar 

  378. Gita S, Hussan A, Choudhury T (2017) Impact of textile dyes waste on aquatic environments and its treatment. Environ Ecol 35(3C):2349–2353

    Google Scholar 

  379. Wang S, Li H (2007) Kinetic modelling and mechanism of dye adsorption on unburned carbon. Dyes Pigments 72(3):308–314

    CAS  Google Scholar 

  380. Mohamed RR, Elella MHA, Sabaa MW, Saad GR (2018) Synthesis of an efficient adsorbent hydrogel based on biodegradable polymers for removing crystal violet dye from aqueous solution. Cellulose 25(11):6513–6529

    CAS  Google Scholar 

  381. Capanema NS, Mansur AA, Mansur HS, de Jesus AC, Carvalho SM, Chagas P, de Oliveira LC (2018) Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications. Environ Technol 39(22):2856–2872

    CAS  PubMed  Google Scholar 

  382. Hu T, Liu Q, Gao T, Dong K, Wei G, Yao J (2018) Facile preparation of tannic acid–poly (vinyl alcohol)/sodium alginate hydrogel beads for methylene blue removal from simulated solution. ACS Omega 3(7):7523–7531

    CAS  PubMed  PubMed Central  Google Scholar 

  383. Sami AJ, Khalid M, Iqbal S, Afzal M, Shakoori A (2017) Synthesis and application of chitosan-starch based nanocomposite in wastewater treatment for the removal of anionic commercial dyes. Pak J Zool 49(1):21–26

    CAS  Google Scholar 

  384. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6(4):4676–4697

    CAS  Google Scholar 

  385. Mondal S (2008) Methods of dye removal from dye house effluent—an overview. Environ Eng Sci 25(3):383–396

    CAS  Google Scholar 

  386. Mittal AK, Venkobachar C (1993) Sorption and desorption of dyes by sulfonated coal. J Environ Eng 119(2):366–368

    CAS  Google Scholar 

  387. Kaşgöz H, Durmus A (2008) Dye removal by a novel hydrogel–clay nanocomposite with enhanced swelling properties. Polym Adv Technol 19(7):838–845

    Google Scholar 

  388. Bhattacharyya R, Ray SK (2014) Enhanced adsorption of synthetic dyes from aqueous solution by a semi-interpenetrating network hydrogel based on starch. J Ind Eng Chem 20(5):3714–3725

    CAS  Google Scholar 

  389. Zhu C, Xia Y, Zai Y, Dai Y, Liu X, Bian J, Liu Y, Liu J, Li G (2019) Adsorption and desorption behaviors of HPEI and thermoresponsive HPEI based gels on anionic and cationic dyes. Chem Eng J 369:863–873

    CAS  Google Scholar 

  390. Alkan M, Çelikçapa S, Demirbaş Ö, Doğan M (2005) Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite. Dyes Pigments 65(3):251–259

    CAS  Google Scholar 

  391. Üzüm ÖB, Karadağ E (2006) A new sorbent chemically cross-linked highly swollen copolymeric hydrogels for dye uptake. Polym–Plast Technol Eng 45(12):1277–1283

    Google Scholar 

  392. Kundakci S, Öğüt HG, Üzüm ÖB, Karadağ E (2011) Equilibrium swelling characterization and dye uptake studies of acrylamide-co-methylenesuccinic acid hydrogels and semi-IPNs with PEG. Polym–Plast Technol Eng 50(9):947–956

    CAS  Google Scholar 

  393. Karadağ E, Kundakci S, Barış Üzüm Ö (2009) Water sorption and dye uptake studies of highly swollen AAm/AMPS hydrogels and semi-IPNs with PEG. Polym–Plast Technol Eng 48(12):1217–1229

    Google Scholar 

  394. Inbaraj BS, Chien J, Ho G, Yang J, Chen B (2006) Equilibrium and kinetic studies on sorption of basic dyes by a natural biopolymer poly (γ-glutamic acid). Biochem Eng J 31(3):204–215

    CAS  Google Scholar 

  395. Blackburn RS (2004) Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment. Environ Sci Technol 38(18):4905–4909

    CAS  PubMed  Google Scholar 

  396. Paulino AT, Guilherme MR, Reis AV, Campese GM, Muniz EC, Nozaki J (2006) Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. J Colloid Interface Sci 301(1):55–62

    CAS  PubMed  Google Scholar 

  397. Klimaviciute R, Riauka A, Zemaitaitis A (2007) The binding of anionic dyes by cross-linked cationic starches. J Polym Res 14(1):67–73

    CAS  Google Scholar 

  398. Delval F, Crini G, Morin N, Vebrel J, Bertini S, Torri G (2002) The sorption of several types of dye on crosslinked polysaccharides derivatives. Dyes Pigments 53(1):79–92

    CAS  Google Scholar 

  399. Ekici S, Güntekin G, Saraydın D (2011) The removal of textile dyes with cross-linked chitosan-poly (acrylamide) adsorbent hydrogels. Polym–Plast Technol Eng 50(12):1247–1255

    CAS  Google Scholar 

  400. Mahmoud GA, Abdel-Aal SE, Badway NA, Abo Farha SA, Alshafei EA (2014) Radiation synthesis and characterization of starch-based hydrogels for removal of acid dye. Starch-Stärke 66(3–4):400–408

    CAS  Google Scholar 

  401. Ilgin P, Ozay H, Ozay O (2020) The efficient removal of anionic and cationic dyes from aqueous media using hydroxyethyl starch-based hydrogels. Cellulose 27:4787–4802

    CAS  Google Scholar 

  402. Sharma G, Naushad M, Kumar A, Rana S, Sharma S, Bhatnagar A, Stadler FJ, Ghfar AA, Khan MR (2017) Efficient removal of Coomassie brilliant blue R-250 dye using starch/poly (alginic acid-cl-acrylamide) nanohydrogel. Process Saf Environ Prot 109:301–310

    CAS  Google Scholar 

  403. Hashem A, Abdel-Halim E, Sokker H (2007) Bi-functional starch composites prepared by γ-irradiation for removal of anionic and cationic dyes from aqueous solutions. Polym–Plast Technol Eng 46(1):71–77

    CAS  Google Scholar 

  404. Dhodapkar R, Rao N, Pande S, Nandy T, Devotta S (2007) Adsorption of cationic dyes on Jalshakti®, super absorbent polymer and photocatalytic regeneration of the adsorbent. React Funct Polym 67(6):540–548

    CAS  Google Scholar 

  405. Hameed B, El-Khaiary M (2008) Malachite green adsorption by Rattan sawdust: isotherm, kinetic and mechanism modeling. J Hazard Mater 159(2–3):574–579

    CAS  PubMed  Google Scholar 

  406. Al-Aidy H, Amdeha E (2020) Green adsorbents based on polyacrylic acid–acrylamide grafted starch hydrogels: the new approach for enhanced adsorption of malachite green dye from aqueous solution. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1711896

    Article  Google Scholar 

  407. Abraham J, Rajasekharan Pillai V (1996) Membrane-encapsulated controlled-release urea fertilizers based on acrylamide copolymers. J Appl Polym Sci 60(13):2347–2351

    CAS  Google Scholar 

  408. Renken A, Hunkeler D (1999) Effect of the surfactant blend composition on the properties of polymerizing acrylamide-based inverse-emulsions: characterization by small-angle neutron scattering and quasi-elastic light scattering. Polymer 40(12):3545–3554

    CAS  Google Scholar 

  409. Jyothi A (2010) Starch graft copolymers: novel applications in industry. Compos Interfaces 17(2–3):165–174

    CAS  Google Scholar 

  410. Saroja N, Gowda L, Tharanathan R (2000) Chromatographic determination of residual monomers in starch-g-polyacrylonitrile and starch-g-polyacrylate. Chromatographia 51(5–6):345–348

    CAS  Google Scholar 

  411. Maharana T, Singh B (2006) Synthesis and characterization of biodegradable polyethylene by graft copolymerization of starch using glucose–Ce(IV) redox system. J Appl Polym Sci 100(4):3229–3239

    CAS  Google Scholar 

  412. Yao K, Wang M (1987) Synthesis of starch-g-polyacrylamide for oilfield drilling treatments. Oilfield Chem 4:175–179

    Google Scholar 

  413. Huang Y, Shen J (1995) Study on thickening ability of starch graft copolymers. Polym Mater Sci Eng 11:98–102

    Google Scholar 

  414. Guo J (1996) Synthesis and performance of heat-resistant and salt-tolerant filtrate loss reducer based on grafted starch. Oilfield Chem 13:169–171

    Google Scholar 

  415. Song H, Zhang S-F, Ma X-C, Wang D-Z, Yang J-Z (2007) Synthesis and application of starch-graft-poly (AM-co-AMPS) by using a complex initiation system of CS-APS. Carbohydr Polym 69(1):189–195

    CAS  Google Scholar 

  416. Kobayashi W, Otaka S, Nagai M (1990) Statistical demolition-facilitating agent. Google Patents

  417. Mostafa KM, Morsy MS (2004) Tailoring a new sizing agent via structural modification of pregelled starch molecules part 1: carboxymethylation and grafting. Starch-Stärke 56(6):254–261

    CAS  Google Scholar 

  418. Mostafa KM, Samarkandy AR (2005) Synthesis of new thickener based on carbohydrate polymers for printing cotton fabrics with reactive dyes. JAPSC 5(7):1206–1213

    CAS  Google Scholar 

  419. Saboktakin MR, Maharramov A, Ramazanov MA (2009) pH-sensitive starch hydrogels via free radical graft copolymerization, synthesis and properties. Carbohydr Polym 77(3):634–638

    CAS  Google Scholar 

  420. Chang A (2015) pH-sensitive starch-g-poly (acrylic acid)/sodium alginate hydrogels for controlled release of diclofenac sodium. Iran Polym J 24(2):161–169

    CAS  Google Scholar 

  421. Poorgholy N, Massoumi B, Jaymand M (2017) A novel starch-based stimuli-responsive nanosystem for theranostic applications. Int J Biol Macromol 97:654–661

    CAS  PubMed  Google Scholar 

  422. Su X, Xiao C, Hu C (2018) Facile preparation and dual responsive behaviors of starch-based hydrogel containing azo and carboxylic groups. Int J Biol Macromol 115:1189–1193

    CAS  PubMed  Google Scholar 

  423. Dragan ES, Apopei DF (2013) Multiresponsive macroporous semi-IPN composite hydrogels based on native or anionically modified potato starch. Carbohydr Polym 92(1):23–32

    CAS  PubMed  Google Scholar 

  424. Wang Y, Zhao F, Wang J, Li L, Zhang K, Shi Y, Gao Y, Guo X (2019) Tungsten-doped VO2/starch derivative hybrid nanothermochromic hydrogel for smart window. Nanomaterials 9(7):970

    CAS  PubMed Central  Google Scholar 

  425. Xiao C, You R, Fan Y, Zhang Y (2016) Tunable functional hydrogels formed from a versatile water-soluble chitosan. Int J Biol Macromol 85:386–390

    CAS  PubMed  Google Scholar 

  426. Guilherme MR, Oliveira RS, Mauricio MR, Cellet TS, Pereira GM, Kunita MH, Muniz EC, Rubira AF (2012) Albumin release from a brain-resembling superabsorbent magnetic hydrogel based on starch. Soft Matter 8(24):6629–6637

    Google Scholar 

  427. Dong D, Li J, Cui M, Wang J, Zhou Y, Luo L, Wei Y, Ye L, Sun H, Yao F (2016) In situ “clickable” zwitterionic starch-based hydrogel for 3D cell encapsulation. ACS Appl Mater Interfaces 8(7):4442–4455

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ibrahim H. Mondal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qamruzzaman, M., Ahmed, F. & Mondal, M.I.H. An Overview on Starch-Based Sustainable Hydrogels: Potential Applications and Aspects. J Polym Environ 30, 19–50 (2022). https://doi.org/10.1007/s10924-021-02180-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02180-9

Keywords

Navigation