Skip to main content
Log in

Methane-Oxidizing Activity and Phylogenetic Diversity of Aerobic Methanotrophs in the Laptev Sea Upper Sediment Horizons

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Methane oxidation rates and diversity of methane-oxidizing microorganisms were studied in the upper sediment layers of the Laptev Sea (methane seep area, Lena fore-delta, shelf, and upper slope not affected by seeps and river flow). The highest methane concentrations and methane oxidation rates (up to 1.16 µmol СН4 dm−3 day−1) were revealed at the seep stations. Carbon dioxide was the main product of methane oxidation at all stations. Sequencing of the 16S rRNA gene fragments revealed microorganisms of the class Gammaproteobacteria, order Methylococcales. Since the share of methanotrophs was high at the sites of constant gas seepage (up to 1.93% of the total read number), they could be detected by sequencing of the native samples. Phylogenetic diversity of methane-oxidizing bacteria was not high, and all detected microorganisms belonged to the Deep-Sea 1 cluster. On the phylogenetic tree, the sequences formed a cluster together with the genus Methyloprofundus. Members of the genera Methylomonas and Methylobacter related to methanotrophs inhabiting freshwater ecosystems were revealed in enrichments from the coastal stations sediment samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bapteste, E., Brochier, C., and Boucher, Y., Higher-level classification of the Archaea: evolution of methanogenesis and methanogens, Archaea, 2005, vol. 1, pp. 353–363.

    Article  CAS  Google Scholar 

  2. Bessette, S., Moalic, Y., Gautey, S., Lesongeur, F., Godfroy, A., and Toffin, L., Relative abundance and diversity of bacterial methanotrophs at the oxic–anoxic interface of the Congo deep-sea fan, Front. Microbiol., 2017, vol. 8, art. 715.

    Article  Google Scholar 

  3. Bienhold, C., Boetius, A., and Ramette, A., The energy-diversity relationship of complex bacterial communities in Arctic deep-sea sediments, ISME J., 2012, vol. 6, pp. 724–732.

    Article  CAS  Google Scholar 

  4. Edgar, R.C., Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 2010, vol. 26, pp. 2460–2461.

    Article  CAS  Google Scholar 

  5. Egorov, A.V. and Ivanov, M.K., Hydrocarbon gases in sediments and mud breccias from the central and eastern part of the Mediterranean Ridge, Geo-Mar. Lett., 1998, vol. 18, pp. 127–138.

    Article  CAS  Google Scholar 

  6. Frey, B., Rime, T., Phillips, M., Stierli, B., Hajdas, I., Widmer, F., and Hartmann, M., Microbial diversity in European alpine permafrost and active layers, FEMS Microbiol. Ecol., 2016, vol. 92. fiw018.

    Article  Google Scholar 

  7. Ginsburg, G.D. and Solov’ev, V.A., Submarinnye gazovye gidraty (Submarine Gas Hydrates), S.-P.b., 1994.

  8. Ivanov, M.V., Rusanov, I.I., Lein, A.Yu., Pimenov, N.V., and Yusupov, S.K., Biogeochemical cycle of methane at North-Western shelf area of the Black Sea, Proc. 6th Int. Conf. “Gas in Marine Sediments,” St. Petersburg, September 5‒8, 2000.

  9. James, R.H., Bousquet, P., Bussmann, I., Haeckel, M., Kipfer, R., Leifer, I., Niemann, H., Ostrovsky, I., Piskozub, J., Rehder, G., Treude, T., Vielstädte, L., and Greinert, J., Effects of climate change on methane emissions from seafloor sediments in Arctic Ocean: a review, Limnol. Oceanogr., 2016, vol. 61. S283–S299.

    Article  Google Scholar 

  10. Kirchman, D.L., Cottrell, M.T., and Lovejoy, C., The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes, Environ. Microbiol., 2010, vol. 12, pp. 1132–1143.

    Article  CAS  Google Scholar 

  11. Knittel, K. and Boetius, A., Anaerobic oxidation of methane: progress with an unknown process, Annu. Rev. Microbiol., 2009, vol. 63, pp. 311–334.

    Article  CAS  Google Scholar 

  12. Koch, K., Knoblauch, C., and Wagner, D., Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the Siberian Laptev Sea, Environ. Microbiol., 2009, vol. 11, pp. 657–668.

    Article  CAS  Google Scholar 

  13. Lein, A.Yu., Miller, Yu.M., Namsaraev, B.B., Pavlo-va, G.A., Pimenov, N.V., Rusanov, I.I., Savvichev, A.S., and Ivanov, M.V., Biogeochemical processes of sulfur cycling in the early stages of sediments diagenesis along the profile from the Yenisei River to the Kara Sea, Oceanology, 1994, vol. 34, pp. 681–692.

    CAS  Google Scholar 

  14. Lein, A.Yu., Pimenov, N.V., Savvichev, A.S., Pavlo-va, G.A., Rusanov, I.I., Miller, Y.M., and Ivanov, M.V., Geochemical features of the diagenesis of the holocene deposits in the area of the Spitsbergen Archipelago, Oceanology, 2000, vol. 40, pp. 228–236.

    Google Scholar 

  15. Lein, A.Yu., Rusanov, I.I., and Pimenov, N.V., Biogeochemical processes of the sulfur and carbon cycles in the Kara Sea, Geochem. Int., 1996, vol. 34, no. 11, pp. 1027–1044.

    Google Scholar 

  16. Lin, X., Zhang, L., Liu, Y., and Li, Y., Bacterial and archaeal community structure of pan-Arctic Ocean sediments revealed by pyrosequencing, Acta Oceanologica Sinica, 2017, vol. 36, no. 8, pp. 146–152.

    Article  Google Scholar 

  17. Lüke, C. and Frenzel, P., Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies, Appl. Environ. Microbiol., 2011, vol. 77, pp. 6305–6309.

    Article  Google Scholar 

  18. Magoc, T. and Salzberg, S.L., FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinformatics, 2011, vol. 27, pp. 2957–2963.

    Article  CAS  Google Scholar 

  19. Pimenov, N., Savvichev, A., Rusanov, I., Lein, A., Egorov, A., Gebruk, A., Moskalev, L., and Vogt, P., Microbial processes of carbon cycle as the base of food chain of Haakon Mosby mud volcano benthic community, Geo-Mar. Lett., 1999, vol. 19, pp. 89–96.

    Article  CAS  Google Scholar 

  20. Pimenov, N.V., Savvichev, A.S., Rusanov, I.I., Lein, A.Yu., and Ivanov, M.V., Microbiological processes of the carbon and sulfur cycle in cold methane seeps in the North Atlantic, Microbiology (Moscow), 2000, vol. 69, pp. 831–843.

    CAS  PubMed  Google Scholar 

  21. Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F., VSEARCH: a versatile open source tool for metagenomics, PeerJ Preprints, 2016, vol. 4. e2409v1.

  22. Romanovskii, N.N., Hubberten, H.-W., Gavrilov, A.V., Eliseeva, A.A., and Tipenko, G.S., Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian seas, Geo-Mar. Lett., 2005, vol. 25, pp. 167–182.

    Article  CAS  Google Scholar 

  23. Rusanov, I.I., Savvichev, A.S., Yusupov, S.K., Pimenov, N.V., and Ivanov, M.V., Exometabolite formation during microbial oxidation of methane in marine ecosystems, Microbiology (Moscow), 1998, vol. 5, pp. 710–717.

    Google Scholar 

  24. Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J.G., Dlugokencky, E.J., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F.N., Castaldi, S., Jackson, R.B., Alexe, A., et al., The global methane budget 2000–2012, Earth Syst. Sci. Data, 2016, vol. 8, pp. 697–751.

    Article  Google Scholar 

  25. Savvichev A.S., Rusanov I.I., Kadnikov V.V., Beletskii A.V., Ravin N.V., Pimenov N.V. Microbial community composition and rates of the methane cycle microbial processes in the upper sediments of the Yamal sector of the southwestern Kara Sea, Microbiology (Moscow), 2018, vol. 87, pp. 238–248.

    Article  CAS  Google Scholar 

  26. Savvichev, A.S., Rusanov, I.I., Pimenov, N.V., Mitske-vich, I.N., Baĭramov, I.V., Lein, A.Yu., and Ivanov, M.V., Microbiological study of the northern part of the Barentz Sea at the onset of winter, Microbiology (Moscow), 2000, vol. 69, pp. 819–830.

    Article  CAS  Google Scholar 

  27. Savvichev, A.S., Rusanov, I.I., Pimenov, N.V., Zakharo-va, E.E., Veslopolova, E.F., Ivanov, M.V., Lein, A.Yu., and Crane, K., Microbial processes of the carbon and sulfur cycles in the Chukchi Sea, Microbiology (Moscow), 2007, vol. 76, pp. 603–613.

    Article  CAS  Google Scholar 

  28. Savvichev, A.S., Rusanov, I.I., Yusupov, S.K., Pimenov, N.V., Ivanov, M.V., and Lein, A.Yu., The biogeochemical cycle of methane in the coastal zone and littoral of the Kandslaksha Bay of the White Sea, Microbiology (Moscow), 2004, vol. 73, pp. 457–468.

    Article  CAS  Google Scholar 

  29. Shakhova, N., Semiletov, I., Leifer, I., Salyuk, A., Rekant, P., and Kosmach, D., Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf, J. Geophys. Res., 2010, vol. 115, C08007.

    Google Scholar 

  30. Shakhova, N., Semiletov, I., Leifer, I., Sergienko, V., Salyuk, A., Kosmach, D., Chernykh, D., Stubbs, C., Nicolsky, D., Tumskoy, V., and Gustafsson, O., Ebullition and storm-induced methane release from the East Siberian Arctic Shelf, Nat. Geosci., 2014, vol. 7, pp. 64–70.

    Article  CAS  Google Scholar 

  31. Shakhova, N., Semiletov, I., Sergienko, V., Lobkovsky, L., Yusupov, V., Salyuk, A., Salomatin, A., Chernykh, D., Kosmach, D., Panteleev, G., Nicolsky, D., Samarkin, V., Joye, S., Charkin, A., Dudarev, O., Meluzov, A., and Gustafsson, Ö., The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice, Phil. Trans. R. Soc. A., 2015, vol. 373, art. 20140451.

  32. Tikhonova, E.N., Tarnovetskii, I.Yu., Malakhova, T.V., Gulin, M.B., Merkel, A.Yu., and Pimenov, N.V., Identification of aerobic methane-oxidizing bacteria in coastal sediments of the Crimean Peninsula, Microbiology (Moscow), 2020, vol. 89, pp. 740–749.

    Article  CAS  Google Scholar 

  33. Yergeau, E., Michel, C., Tremblay, J., Niemi, A., King, T.L., Wyglinski, J., Lee, K., and Greer, C.W., Metagenomic survey of the taxonomic and functional microbial communities of seawater and sea ice from the Canadian Arctic, Sci. Rep., 2017, vol. 7, art. 42242. https://doi.org/10.1038/srep42242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeng, Y., Zhang, F., He, J., Lee, S.H., Qiao, Z., Yu, Y., and Li, H., Bacterioplankton community structure in the Arctic waters as revealed by pyrosequencing of 16S rRNA genes, Antonie van Leeuwenhoek, 2013, vol. 103, pp. 1309–1319.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.P. Semiletov, supervisor of the 73rd cruise of R/V Akademik Mstislav Keldysh and to all the scientific team and ship crew for creating conditions for sampling and for their assistance.

Funding

The work was partially funded by the Russian Foundation for Basic Research, project A 20-04-00126, and by the State Assignment of the Biotechnology Research Center, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Tikhonova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

AUTHOR CONTRIBUTION

I.I. Rusanov and O.S. Samylina chose the sampling sites and carried out sampling, primary processing, and sample description. E.E. Zakharova and I.I. Rusanov measured methane concentrations and methane oxidation rates. V.V. Kadnikov isolated DNA from native samples, sequenced the 16S rRNA gene, and constructed the phylogenetic tree. E.N. Tikhonova obtained enrichment cultures and carried out DNA isolation. N.V. Pimenov, E.N. Tikhonova, and I.I. Rusanov wrote the article. All authors participated in discussion of the results.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonova, E.N., Kadnikov, V.V., Rusanov, I.I. et al. Methane-Oxidizing Activity and Phylogenetic Diversity of Aerobic Methanotrophs in the Laptev Sea Upper Sediment Horizons. Microbiology 90, 314–323 (2021). https://doi.org/10.1134/S0026261721030127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721030127

Keywords:

Navigation