Skip to main content
Log in

Decreasing Porosities in Continuous Casting Thick Slab by Soft Reduction Technology

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, porosities in thick slabs were successfully decreased by soft reduction technology coupled with an optimal secondary cooling process. Heat transfer calculation showed that asynchronous solidification occurred in the slab when unreasonable secondary cooling was used. As a result, a W-shaped solidification frontier was formed with two liquid craters near the edges of the solidifying slab. Because of a higher solid fraction in the slab width center, compression of the slab was hindered in the soft reduction and porosities could not be efficiently decreased. Under optimal secondary cooling, viz., with intensified cooling water in the 1/4 width regions while weakened cooling in the 1/2 width region of the slab, a W-shaped solid–liquid frontier was greatly impaired. As a result, effective compression can penetrate into the slab center in soft reduction and porosities are remarkably decreased. Measurements showed volumes of porosities in the 1/4 width and 1/2 width regions of the slab were greatly decreased from 9.063 × 10−4 to 2.679 × 10−4 cm3/g and from 2.695 × 10−4 to 1.728 × 10−4 cm3/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. [1] J. Hu, L.X. Du, H. Xie, H.X. Gao, R.D.K. Misra, Mater. Sci. Eng. A., 2014, vol. 607, pp. 122-31.

    Article  CAS  Google Scholar 

  2. [2] O.S. Logunova, Steel in Translation, 2008, vol. 38, pp. 849-52.

    Article  Google Scholar 

  3. [3] Y. Xu, R.J. Xu, Z. J. Fan, C.B. Li, A.Y. Deng, E.G. Wang, Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 534-41.

    Article  CAS  Google Scholar 

  4. [4] X.B. Li, H. Ding, Z.Y. Tang, J.C. He, Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 21-9.

    Article  Google Scholar 

  5. [5] M.C. Flemings, ISIJ Int., 2000, vol. 40, pp. 833-41.

    Article  CAS  Google Scholar 

  6. [6] C.H. Yim, J.K. Park, B.D. You, S.M. Yang, ISIJ Int. (Suppl.), 1996, vol. 36, S231-4.

    Article  Google Scholar 

  7. [7] H. Preßlinger, S. Ilie, P. Reisinger, A. Schiefermüller, A. Pissenberger, E. Parteder, C. Bernhard, ISIJ Int., 2006, vol. 46, pp. 1845-51.

    Article  Google Scholar 

  8. [8] W. Bleck, W. Wang, R. Bülte, Steel Res. Int., 2006, vol. 77, pp. 485-91.

    Article  CAS  Google Scholar 

  9. [9] T. Masaoka, S. Mizuoka, H. Kobayashi, M. Suzuki, Steelmaking Conf. Proc., 1989, vol. 72, pp. 63-9.

    CAS  Google Scholar 

  10. [10] R. Thome, K. Harste, ISIJ Int., 2006, vol. 46, pp. 1839-44.

    Article  CAS  Google Scholar 

  11. Chen Y, Xiao MF, Wu GR (2010) J. Iron Steel Res. Int. 17(6), 1-5.

    Article  Google Scholar 

  12. [12] M. Wu, J. Domitner, A. Ludwig, Metall. Mater. Trans. A, 2012, vol. 43, pp. 945-63.

    Article  Google Scholar 

  13. [13] C. Ji, S. Luo, M.Y. Zhu, ISIJ Int., 2014, vol. 54, pp. 504-510.

    Article  CAS  Google Scholar 

  14. [14] S. Hiraki, A. Yamanaka, Y. Shirai, Y. Sato, S. Kumakura, Mater. Jpn., 2009, vol. 48, pp. 20-2.

    Article  Google Scholar 

  15. S.H. Joo, Proc. 6th Int. Congress Sci. Technol. Steelmaking, 2015, May 12–14, Beijing, China, pp. 29.

  16. C.H. Yim, J.D. Seo, Proc. 5th Int. Congress on the Sci. Technol. Steelmaking, 2012, Oct. 1–3, Dresden, Germany.

  17. M.Y. Zhu, C. Ji, 11th China Steel Annual Meeting, 2017, Nov., 21–23, Beijing, China, 2-1.

  18. Z.G. Xu, X.H. Wang, and M. Jiang: Steel Res. Int., 2017, vol. 88, pp. 231–42.

  19. [19] M.J. Long, Z.H. Dong, D.F. Chen, Q. Liao, Y.G. Ma, Int. J. Mater. Prod. Technol., 2013, vol. 47, pp. 216-32.

    Article  Google Scholar 

  20. Z.G. Xu, Study on the development and application of heavy reduction at the end of solidification. Beijing: Ph. D thesis of University of Science and Technology Beijing. (2018) 71-7.

  21. Ji, C., S. Luo, M.Y. Zhu, Y. Sahai, ISIJ Int., 2013, 54, 103-11.

    Article  Google Scholar 

  22. [22] E.A. Mizikar, Trans. TMS- AIME., 1967, vol. 239, 1747-53.

    CAS  Google Scholar 

  23. [23] V.R. Voller, C.R. Swaminathan, B.G. Thomas, Int. J. Num. Meth. Eng., 1990, vol. 30, pp. 875-98.

    Article  Google Scholar 

  24. [24] S.K. Choudhary, D. Mazumdar, A. Ghosh, ISIJ Int., 1993, vol. 33, pp. 764-74.

    Article  CAS  Google Scholar 

  25. [25] D. Mazumdar, ISIJ Int., 1989, vol. 29, pp. 524-8.

    Article  Google Scholar 

  26. [26] H. Ma, J.M. Zhang, R. Cheng, S.X. Wang, Trans. Indian Inst. Met., 2019, vol. 72, pp. 825-35.

    Article  Google Scholar 

  27. [27] Y. Shen, Fundamentals of Metallurgical Transmission Principle, Metallurgical Industry Press, Beijing, China, 2000.

    Google Scholar 

  28. [28] Z. Peng, Y.P. Bao, Y.N. Chen, L.K. Yang, C. Xie, F. Zhang, Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 18-25.

    Article  CAS  Google Scholar 

  29. [29] B. Lally, L. Biegler, H. Henein, Metall. Trans. B., 1990, vol. 21, pp. 761-70.

    Article  CAS  Google Scholar 

  30. A.A.I. Manesh, L.J. Segerlind, Arch. Appl. Mech., 61, 393-403 (1991).

    Article  Google Scholar 

  31. [31] A. Ramírez-López, R. Aguilar-López, M. Palomar-Pardavé, M.A. Romero-Romo, D. Muñoz-Negrón, Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 403-16.

    Article  Google Scholar 

  32. [32] C.S. Li, B.G. Thomas, Metall. Mater. Trans. B, 2004, vol. 35, pp. 1151-72.

    Article  CAS  Google Scholar 

  33. [33] D.Z. He, Continuous Casting, second ed., Metallurgical Industry Press, Beijing, China, 2013.

    Google Scholar 

  34. Wang B, Ji ZP, Liu WH, Ma JC, Xie Z (2008) J. Iron Steel Res. Int. 15(4), 16-20

    Article  CAS  Google Scholar 

  35. [35] J. Zhang, D.F. Chen, C.Q. Zhang, S.G. Wang, W.S. Hwang, M.R. Han, J. Mater. Process. Technol., 2015, vol. 222, pp. 315-26.

    Article  CAS  Google Scholar 

  36. [36] S. Mosayebidorcheh, M. Gorji-Bandpy, Appl. Therm. Eng., 2017, vol. 118, pp. 724-33.

    Article  Google Scholar 

  37. [37] E. Laitinen, P. Neittaanmäki, J. Eng. Math., 1988, vol. 22, pp. 335-45.

    Article  Google Scholar 

  38. [38] S. Louhenkilpi, E. Laitinen, R. Nieminen, Metall. Trans. B, 1993, vol. 24, pp. 685-93.

    Article  CAS  Google Scholar 

  39. [39] M. Janik, H. Dyja, S. Berski, G. Banaszek, J. Mater. Process. Technol., 2004, vol. 153, pp. 578-82.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the Fundamental Research Funds for Central Universities (Grant Nos. FRF-DF-20-08 and FRF-TP-18-004B1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 2, 2020, accepted May 12, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Yang, EJ., Hou, ZW. et al. Decreasing Porosities in Continuous Casting Thick Slab by Soft Reduction Technology. Metall Mater Trans B 52, 2753–2759 (2021). https://doi.org/10.1007/s11663-021-02225-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02225-3

Navigation