Skip to main content
Log in

Effect of Initial Microstructure on Mechanical Properties of Pressure Vessel Steel after Intercritical Heat Treatment

  • Published:
Metal Science and Heat Treatment Aims and scope

The influence of the initial structure on formation of austenite, evolution of structure, and elevation of operating characteristics of steel SA508 Gr.3 (0.24% C, 1.40% Mn, 0.88% Ni, 0.54% Mo) after an intercritical heat treatment (IHT) is studied. After the IHT, the grain size of the hypoeutectoid ferrite in the steel with an initially ferritic-bainitic structure is much larger than in the initially bainitic or martensitic structures. The density of the low-angle and high-angle boundaries is much higher in the steel with initial bainitic or martensitic microstructure. The initial microstructure affects substantially the strength and the impact toughness of the steel subjected to IHT. The mechanical properties are increased as a result of refinement of the microstructure and growth of the density of grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. H. Pous-Romero, I. Lonardelli, D. Cogswell, and H. K. D. H. Bhadeshia, “Austenite grain growth in a nuclear pressure vessel steel,” Mater. Sci. Eng. A, 567, 72 – 79 (2013).

    Article  CAS  Google Scholar 

  2. X. Luo, L. Han, and J. Gu, “Study on austenitization kinetics of AS508 Gr.3 steel based on isoconversional method,” Metals, 6(1), 1 – 8 (2016).

    Google Scholar 

  3. K. Suzuki, I. Kurihara, T. Sasaki, et al., “Application of high strength MnMoNi steel to pressure vessels for nuclear power plant,” Nucl. Eng. Des., 206(2 – 3), 261 – 277 (2001).

  4. K.-H. Lee, S.-G. Park, M.-C. Kim, and B.-S. Lee, “Cleavage fracture toughness of tempered martensitic Ni – Cr – Mo low alloy steel with different martensite fraction,” Mater. Sci. Eng. A, 534, 75 – 82 (2012).

    Article  CAS  Google Scholar 

  5. S.-G. Park, K.-H. Lee, M. S. Kim, and B.-S. Lee, “Effects of boundary characteristics on resistance to temper embrittlement and segregation behavior of Ni-Cr-Mo low alloy steel,” Mater. Sci. Eng. A, 561, 277 – 284 (2013).

    Article  CAS  Google Scholar 

  6. E. J. Pickering and H. K. D. H. Bhadeshia, “Macrosegregation and microstructural evolution in a pressure-vessel steel,” Metall. Mater. Trans. A, 45(7), 2983 – 2997 (2014).

    Article  CAS  Google Scholar 

  7. G. Yan, L. Han, C. Li, et al., “Characteristic of retained austenite decomposition during tempering and its effect on impact toughness in SA508 Gr.3 steel,” J. Nucl. Mater., 483, 167 – 175 (2017).

    Article  CAS  Google Scholar 

  8. L. Shi, Z. Yan, Y. Liu, et al., “Improved toughness and ductility in ferrite_acicular ferrite dual-phase steel through intercritical heat treatment,” Mater. Sci. Eng. A, 590, 7 – 15 (2014).

    Article  CAS  Google Scholar 

  9. J. Kang, CWang, and G, D.Wang, “Microstructural characteristics and impact fracture behavior of a high-strength low-alloy steel treated by intercritical heat treatment,” Mater. Sci. Eng. A, 553, 96 – 104 (2012).

  10. Y. S. Ahn, H. D. Kim, T. S. Byun, et al., “Application of intercritical heat treatment to improve toughness of Sa508 C1.3 reactor pressure vessel steel,” Nucl. Eng. Des., 194(2 – 3), 161 – 177 (1999).

  11. J. Jiang, H.Wu, J. Liang, and D. Tang, “Microstructural characterization and impact toughness of a jackup rig rack steel treated by intercritical heat treatment,” Mater. Sci. Eng. A, 587, 359 – 364 (2013).

    Article  CAS  Google Scholar 

  12. M. A. Maleque, Y. M. Poon, and H. H. Masjuki, “The effect of intercritical heat treatment on the mechanical properties of AISI 3115 steel,” J. Mater. Proc. Technol., 153 – 154, 482 – 487 (2004).

  13. P. Movahed, S. Kolahgar, S. P. H. Marashi, et al., “The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets,” Mater. Sci. Eng. A, 18(1 – 2), 1 – 6 (2009).

  14. E. López-Martínez, O. Vázquez-Gómez, H. J. Vergara-Hernández, and B. Campillo, “Effect of initial microstructure on austenite formation kinetics in high-strength experimental microalloyed steels,” Int. J. Min. Met. Mater., 22(12), 1304 – 1312 (2015).

    Article  Google Scholar 

  15. Y. S. Oh, I. H. Son, K. H. Jung, et al., “Effect of initial microstructure on mechanical properties in warm caliber rolling of high carbon steel,” Mater. Sci. Eng. A, 528, 18, 5833 – 5839 (2011).

    Article  CAS  Google Scholar 

  16. H. Rastegari, A. Kermanpur, and A. Najafizadeh, “Effect of initial microstructure on the work hardening behavior of plain eutectoid steel,” Mater. Sci. Eng. A, 632, 103 – 109 (2015).

    Article  CAS  Google Scholar 

  17. E. J. Pickering and H. K. D. H. Bhadeshia, “The consequences of macroscopic segregation on the transformation behavior of a pressure-vessel steel,” J. Press. Vess. Technol., 136(3), 031403 (2014).

  18. F. Moszner, E. Povoden-Karadeniz, S. Pogatscher et al, “Reverse α' → γ transformation mechanisms of martensitic Fe – Mn and age-hardenable Fe – Mn – Pd alloys upon fast and slow continuous heating,” Acta Mater., 72, 99 – 109 (2014).

    Article  CAS  Google Scholar 

  19. J. Han and Y.-K. Lee, “The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels,” Acta Mater., 67, 354 – 361 (2014).

    Article  CAS  Google Scholar 

  20. M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez, “Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior,” Metall. Mater. Trans. A, 34(11), 2505 – 2516 (2003).

    Article  Google Scholar 

  21. B. Hwang, G. K. Yang, S. Lee, et al., “Effective grain size and charpy impact properties of high-toughness X70 pipeline steels,” Metall. Mater. Trans. A, 36(8), 2107 – 2114 (2005).

    Article  Google Scholar 

  22. W. Q. Cao, A. Godfrey, N. Hansen, and Q. Liu, “Annealing behavior of nanostructured aluminum produced by cold rolling to ultrahigh strains,” Metall. Mater. Trans. A, 40(1), 204 – 214 (2008).

    Article  Google Scholar 

  23. G. Yan, L. Han, C. Li, et al., “Effect of macrosegregation on the microstructure and mechanical properties of a pressure-vessel steel,” Metall. Mater. Trans. A, 48(7), 3470 – 3481 (2017).

    Article  CAS  Google Scholar 

  24. C. Li, L. Han, G. Yan, et al., “Time-dependent temper embrittlement of reactor pressure vessel steel: Correlation between microstructural evolution and mechanical properties during tempering at 650°C,” J. Nucl. Mater., 480, 344 – 354 (2016).

    Article  CAS  Google Scholar 

  25. M. Azuma, S. Goutianos, N. Hansen e al., “Effect of hardness of martensite and ferrite on void formation in dual phase steel,” Mater. Sci. Technol., 28(9 – 10), 1092 – 1100 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghua Yan.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2, pp. 10 – 19, February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, G., Sun, Y., Gu, J. et al. Effect of Initial Microstructure on Mechanical Properties of Pressure Vessel Steel after Intercritical Heat Treatment. Met Sci Heat Treat 63, 70–79 (2021). https://doi.org/10.1007/s11041-021-00649-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00649-x

Key words

Navigation