Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Integration of theory and experiment in the modelling of heterogeneous electrocatalysis

Abstract

Heterogeneous electrocatalysis is critical to many energy conversion processes. Theoretical and computational approaches are essential to interpret experimental data and provide the mechanistic understanding necessary to design more effective catalysts. However, automated general procedures to build predictive theoretical and computational frameworks are not readily available; specific choices must be made in terms of the atomistic structural model and the level of theory, as well as the experimental data used to inform and validate these choices. Here we outline some best practices for modelling heterogeneous systems and present examples in the context of catalysis at metal electrodes and oxides. The level of theory should be chosen for the specific system and properties of interest, and experimental validation is essential from the beginning to the end of the study. Continuous feedback and ultimate integration between experiment and theory enhances the power of calculations to elucidate mechanisms, identify effective descriptors and clarify design principles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The interplay between theory, simulation, experiment and data.
Fig. 2: Electrochemical PCET and interfacial electrostatic potentials.
Fig. 3: Atomistic structural models of a photo-absorber and catalyst for OER.

Similar content being viewed by others

References

  1. Greeley, J. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu. Rev. Chem. Biomol. 7, 605–635 (2016).

    Article  Google Scholar 

  2. Bruix, A., Margraf, J. T., Andersen, M. & Reuter, K. First-principles-based multiscale modelling of heterogeneous catalysis. Nat. Catal. 2, 659–670 (2019).

    Article  Google Scholar 

  3. Quesne, M. G., Silveri, F., de Leeuw, N. H. & Catlow, C. R. A. Advances in sustainable catalysis: a computational perspective. Front. Chem. 7, 182 (2019).

    Article  Google Scholar 

  4. Schlexer Lamoureux, P. et al. Machine learning for computational heterogeneous catalysis. ChemCatChem 11, 3581–3601 (2019).

    Article  Google Scholar 

  5. Cheng, J. & Sprik, M. Alignment of electronic energy levels at electrochemical interfaces. Phys. Chem. Chem. Phys. 14, 11245–11267 (2012).

    Article  Google Scholar 

  6. Kharche, N., Muckerman, J. T. & Hybertsen, M. S. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces. Phys. Rev. Lett. 113, 176802 (2014).

    Article  Google Scholar 

  7. Kharche, N., Muckerman, J. T. & Hybertsen, M. S. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces. Phys. Rev. Lett. 113, 176802 (2014).

    Article  Google Scholar 

  8. Pham, T. A., Ping, Y. & Galli, G. Modelling heterogeneous interfaces for solar water splitting. Nat. Mater. 16, 401–408 (2017).

    Article  Google Scholar 

  9. Rousseau, R., Glezakou, V.-A. & Selloni, A. Theoretical insights into the surface physics and chemistry of redox-active oxides. Nat. Rev. Mater. 5, 460–475 (2020).

    Article  Google Scholar 

  10. Selcuk, S. & Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1112 (2016).

    Article  Google Scholar 

  11. Gerosa, M., Gygi, F., Govoni, M. & Galli, G. The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. Nat. Mater. 17, 1122–1127 (2018).

    Article  Google Scholar 

  12. Janthon, P. et al. Bulk properties of transition metals: a challenge for the design of universal density functionals. J. Chem. Theory Comput. 10, 3832–3839 (2014).

    Article  Google Scholar 

  13. Mandal, S., Haule, K., Rabe, K. M. & Vanderbilt, D. Systematic beyond-DFT study of binary transition metal oxides. NPJ Comput. Mater. 5, 115 (2019).

    Article  Google Scholar 

  14. Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).

    Article  Google Scholar 

  15. Gauthier, J. A. et al. Unified approach to implicit and explicit solvent simulations of electrochemical reaction energetics. J. Chem. Theory Comput. 15, 6895–6906 (2019).

    Article  Google Scholar 

  16. Verma, P. & Truhlar, D. G. Status and challenges of density functional theory. Trends Chem. 2, 302–318 (2020).

    Article  Google Scholar 

  17. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  18. Scherpelz, P., Govoni, M., Hamada, I. & Galli, G. Implementation and validation of fully relativistic GW calculations: spin–orbit coupling in molecules, nanocrystals, and solids. J. Chem. Theory Comput. 12, 3523–3544 (2016).

    Article  Google Scholar 

  19. Andreussi, O., Dabo, I. & Marzari, N. Revised self-consistent continuum solvation in electronic-structure calculations. J. Chem. Phys. 136, 064102 (2012).

    Article  Google Scholar 

  20. Hörmann, N. G., Andreussi, O. & Marzari, N. Grand canonical simulations of electrochemical interfaces in implicit solvation models. J. Chem. Phys. 150, 041730 (2019).

    Article  Google Scholar 

  21. Solis, B. H. & Hammes-Schiffer, S. Proton-coupled electron transfer in molecular electrocatalysis: theoretical methods and design principles. Inorg. Chem. 53, 6427–6443 (2014).

    Article  Google Scholar 

  22. Pham, T. A., Lee, D., Schwegler, E. & Galli, G. Interfacial effects on the band edges of functionalized Si surfaces in liquid water. J. Am. Chem. Soc. 136, 17071–17077 (2014).

    Article  Google Scholar 

  23. Venkataraman, C., Soudackov, A. V. & Hammes-Schiffer, S. Theoretical formulation of nonadiabatic electrochemical proton-coupled electron transfer at metal−solution interfaces. J. Phys. Chem. C 112, 12386–12397 (2008).

    Article  Google Scholar 

  24. Goldsmith, Z. K., Lam, Y. C., Soudackov, A. V. & Hammes-Schiffer, S. Proton discharge on a gold electrode from triethylammonium in acetonitrile: theoretical modeling of potential-dependent kinetic isotope effects. J. Am. Chem. Soc. 141, 1084–1090 (2019).

    Article  Google Scholar 

  25. Lam, Y.-C., Soudackov, A. V. & Hammes-Schiffer, S. Kinetics of proton discharge on metal electrodes: effects of vibrational nonadiabaticity and solvent dynamics. J. Phys. Chem. Lett. 10, 5312–5317 (2019).

    Article  Google Scholar 

  26. Lam, Y.-C., Soudackov, A. V. & Hammes-Schiffer, S. Theory of electrochemical proton-coupled electron transfer in diabatic vibronic representation: application to proton discharge on metal electrodes in alkaline solution. J. Phys. Chem. C 124, 27309–27322 (2020).

    Article  Google Scholar 

  27. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (John Wiley & Sons, 2001).

  28. Ulman, K., Poli, E., Seriani, N., Piccinin, S. & Gebauer, R. Understanding the electrochemical double layer at the hematite/water interface: a first principles molecular dynamics study. J. Chem. Phys. 150, 041707 (2018).

    Article  Google Scholar 

  29. Jackson, M. N. & Surendranath, Y. Donor-dependent kinetics of interfacial proton-coupled electron transfer. J. Am. Chem. Soc. 138, 3228–3234 (2016).

    Article  Google Scholar 

  30. Sakaushi, K. Quantum proton tunneling in multi-electron/-proton transfer electrode processes. Faraday Discuss. 221, 428–448 (2020).

    Article  Google Scholar 

  31. Kastlunger, G., Lindgren, P. & Peterson, A. A. Controlled-potential simulation of elementary electrochemical reactions: proton discharge on metal surfaces. J. Phys. Chem. C 122, 12771–12781 (2018).

    Article  Google Scholar 

  32. Goldsmith, Z. K., Secor, M. & Hammes-Schiffer, S. Inhomogeneity of interfacial electric fields at vibrational probes on electrode surfaces. ACS Cent. Sci. 6, 304–311 (2020).

    Article  Google Scholar 

  33. Melander, M. M., Kuisma, M. J., Christensen, T. E. K. & Honkala, K. Grand-canonical approach to density functional theory of electrocatalytic systems: Thermodynamics of solid-liquid interfaces at constant ion and electrode potentials. J. Chem. Phys. 150, 041706 (2018).

    Article  Google Scholar 

  34. Schkolnik, G. et al. Vibrational Stark effect of the electric-field reporter 4-mercaptobenzonitrile as a tool for investigating electrostatics at electrode/SAM/solution interfaces. Int. J. Mol. Sci. 13, 7466–7482 (2012).

    Article  Google Scholar 

  35. Patrow, J. G., Sorenson, S. A. & Dawlaty, J. M. Direct spectroscopic measurement of interfacial electric fields near an electrode under polarizing or current-carrying conditions. J. Phys. Chem. C 121, 11585–11592 (2017).

    Article  Google Scholar 

  36. Sorenson, S. A., Patrow, J. G. & Dawlaty, J. M. Solvation reaction field at the interface measured by vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 139, 2369–2378 (2017).

    Article  Google Scholar 

  37. Jackson, M. N. & Surendranath, Y. Molecular control of heterogeneous electrocatalysis through graphite conjugation. Acc. Chem. Res. 52, 3432–3441 (2019).

    Article  Google Scholar 

  38. Warburton, R. E. et al. Interfacial field-driven proton-coupled electron transfer at graphite-conjugated organic acids. J. Am. Chem. Soc. 142, 20855–20864 (2020).

    Article  Google Scholar 

  39. Lee, D. et al. The impact of surface composition on the interfacial energetics and photoelectrochemical properties of BiVO4. Nat. Energy 6, 287–294 (2021).

  40. Wiktor, J. & Pasquarello, A. Electron and hole polarons at the BiVO4–water interface. ACS Appl. Mater. Interfaces 11, 18423–18426 (2019).

    Article  Google Scholar 

  41. Wang, W. et al. The role of surface oxygen vacancies in BiVO4. Chem. Mater. 32, 2899–2909 (2020).

    Article  Google Scholar 

  42. Goldsmith, Z. K. et al. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry. Proc. Natl Acad. Sci. USA 114, 3050–3055 (2017).

    Article  Google Scholar 

  43. Ping, Y., Goddard, W. A. & Galli, G. A. Energetics and solvation effects at the photoanode/catalyst interface: ohmic contact versus Schottky barrier. J. Am. Chem. Soc. 137, 5264–5267 (2015).

    Article  Google Scholar 

  44. Spurgeon, J. M., Velazquez, J. M. & McDowell, M. T. Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte. Phys. Chem. Chem. Phys. 16, 3623–3631 (2014).

    Article  Google Scholar 

  45. Di Valentin, C. & Selloni, A. Bulk and surface polarons in photoexcited anatase TiO2. J. Phys. Chem. Lett. 2, 2223–2228 (2011).

    Article  Google Scholar 

  46. Hoster, H. E., Alves, O. B. & Koper, M. T. M. Tuning adsorption via strain and vertical ligand effects. ChemPhysChem 11, 1518–1524 (2010).

    Article  Google Scholar 

  47. van der Niet, M. J. T. C., Garcia-Araez, N., Hernández, J., Feliu, J. M. & Koper, M. T. M. Water dissociation on well-defined platinum surfaces: the electrochemical perspective. Catal. Today 202, 105–113 (2013).

    Article  Google Scholar 

  48. Hansen, H. A., Viswanathan, V. & Nørskov, J. K. Unifying kinetic and thermodynamic analysis of 2 e and 4 e reduction of oxygen on metal surfaces. J. Phys. Chem. C 118, 6706–6718 (2014).

    Article  Google Scholar 

  49. Rossmeisl, J. et al. Realistic cyclic voltammograms from ab initio simulations in alkaline and acidic electrolytes. J. Phys. Chem. C 124, 20055–20065 (2020).

    Article  Google Scholar 

  50. Tiwari, A. et al. Fingerprint voltammograms of copper single crystals under alkaline conditions: a fundamental mechanistic analysis. J. Phys. Chem. Lett. 11, 1450–1455 (2020).

    Article  Google Scholar 

  51. Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

    Article  Google Scholar 

  52. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

    Article  Google Scholar 

  53. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  Google Scholar 

  54. Govoni, M. et al. Qresp, a tool for curating, discovering and exploring reproducible scientific papers. Sci. Data 6, 190002 (2019).

    Article  Google Scholar 

  55. Blaiszik, B. et al. The materials data facility: data services to advance materials science research. JOM 68, 2045–2052 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation grant no. CHE-1764399 (G.G.) and the Air Force Office of Scientific Research under awards FA9550-18-1-0420 and FA9550-18-1-0134 (S.H.-S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sharon Hammes-Schiffer or Giulia Galli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Michal Bajdich, Annabella Selloni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammes-Schiffer, S., Galli, G. Integration of theory and experiment in the modelling of heterogeneous electrocatalysis. Nat Energy 6, 700–705 (2021). https://doi.org/10.1038/s41560-021-00827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-021-00827-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing