Skip to main content
Log in

Numerical Analysis of the Combustion in Micro Gas Turbine with Methane/Biogas Fuels

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Replacing natural gas with the environmentally sustainable biogas is a promising way to reduce the usage of fossil fuels and promote organic waste utilization. Micro gas turbine (MGT), as a common power supply machine, is capable of adopting biogas as the fuel. Given the different intrinsic components between natural gas and biogas, combustion performance of biogas in MGT was studied in this work. The effects of fuel composition and excess air coefficient on combustion performance were analyzed through three-dimensional numerical simulation of the MGT combustor. RNG k-ε turbulent model, eddy-dissipation/finite rate model, and eight-step reaction mechanism were adopted in the simulation. The results showed that when the CO2 percentage in biogas increases, the NO and CO emissions decreases. However, the fuel rate and pressure drop of combustion chamber increases to maintain constant thermal input. The overall high velocity also increases the requirement for materials of combustion chamber. Furthermore, the average temperature of whole combustor decreases when the excess air coefficient increases. Accordingly, the CO2 mole fraction in biogas should be controlled below 30% and the optimal range of the excess air coefficient is 2–2.5 for the MGT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data, models, and code generated or used during the study appear in the published article.

References

  1. Bing, W.; Wang, Z.; Lu, J.; Li, L.: Asme: Research of optimal operation on micro-turbine CCHP systems. In: Proceedings of the Energy Sustainability Conference 2007, (2007)

  2. Iodice, P.; Langella, G.; Amoresano, A.; Senatore, A.: Comparative exergetic analysis of solar integration and regeneration in steam power plants. J. Energy Eng. (2017). https://doi.org/10.1061/(asce)ey.1943-7897.0000477

    Article  Google Scholar 

  3. Zhu, M.; Wu, X.; Li, Y.; Shen, J.; Zhang, J.: IEEE: modeling and model predictive control of micro gas turbine-based combined cooling, heating and power system. In: Proceedings of the 28th Chinese Control and Decision Conference. Chinese Control and Decision Conference, pp. 65–70. (2016)

  4. Pilavachi, P.A.: Mini- and micro-gas turbines for combined heat and power. Appl. Therm. Eng. 22(18), 2003–2014 (2002). https://doi.org/10.1016/s1359-4311(02)00132-1

    Article  Google Scholar 

  5. Wang, S.; Ruan, Y.; Zhou, W.; Li, Z.; Wu, J.; Liu, D.: Net energy analysis of small-scale biogas self-supply anaerobic digestion system operated at psychrophilic to thermophilic conditions. J. Clean. Prod. 174, 226–236 (2018). https://doi.org/10.1016/j.jclepro.2017.10.186

    Article  Google Scholar 

  6. Mordaunt, C.J.; Pierce, W.C.: Design and preliminary results of an atmospheric-pressure model gas turbine combustor utilizing varying CO2 doping concentration in CH4 to emulate biogas combustion. Fuel 124, 258–268 (2014). https://doi.org/10.1016/j.fuel.2014.01.097

    Article  Google Scholar 

  7. Chakrabarty, S.; Boksh, F.I.M.M.; Chakraborty, A.: Economic viability of biogas and green self-employment opportunities. Renew. Sustain. Energy Rev. 28, 757–766 (2013). https://doi.org/10.1016/j.rser.2013.08.002

    Article  Google Scholar 

  8. Ali, G.; Nitivattananon, V.; Abbas, S.; Sabir, M.: Green waste to biogas: renewable energy possibilities for Thailand’s green markets. Renew. Sustain. Energy Rev. 16(7), 5423–5429 (2012). https://doi.org/10.1016/j.rser.2012.05.021

    Article  Google Scholar 

  9. Camilo Solarte-Toro, J.; Chacon-Perez, Y.; Ariel Cardona-Alzate, C.: Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron. J. Biotechnol. 33, 52–62 (2018). https://doi.org/10.1016/j.ejbt.2018.03.005

    Article  Google Scholar 

  10. Liu, J.; Zhang, W.; Yin, F.; Liu, S.; Liu, J.; Zhao, X.; Xu, L.; Chen, Y.: Experimental study on potential of biogas fermentation with walnut peel. In: Zhang, H., Jin, D., Zhao, X.J. (eds.) Advanced Materials Research, vol. 788, pp. 705–708. (2013). https://doi.org/10.4028/www.scientific.net/AMR.788.705

  11. Bilandzija, N.; Voca, N.; Kricka, T.; Jurisic, V.; Matin, A.: Biogas production on dairy farms: a croatia case study. Mljekarstvo 63(1), 22–29 (2013)

    Google Scholar 

  12. Poeschl, M.; Ward, S.; Owende, P.: Environmental impacts of biogas deployment - Part II: life cycle assessment of multiple production and utilization pathways. J. Clean. Prod. 24, 184–201 (2012). https://doi.org/10.1016/j.jclepro.2011.10.030

    Article  Google Scholar 

  13. Poeschl, M.; Ward, S.; Owende, P.: Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 87(11), 3305–3321 (2010). https://doi.org/10.1016/j.apenergy.2010.05.011

    Article  Google Scholar 

  14. Hashim, M.A.; Khalid, A.; Salleh, H.; Sunar, N.M.: Effects of fuel and nozzle characteristics on micro gas turbine system: a review. in: international research and innovation summit, vol. 226. In: IOP Conference Series-Materials Science and Engineering. (2017)

  15. Okoroigwe, E.C.; Madhlopa, A.: Advances in biofueling of micro gas turbines for power generation. Energy Technol. (2019). https://doi.org/10.1002/ente.201800689

    Article  Google Scholar 

  16. Hosseini, S.E.; Wahid, M.A.: Biogas utilization: experimental investigation on biogas flameless combustion in lab-scale furnace. Energy Convers. Manage. 74, 426–432 (2013). https://doi.org/10.1016/j.enconman.2013.06.026

    Article  Google Scholar 

  17. Hosseini, S.E.; Wahid, M.A.: Development of biogas combustion in combined heat and power generation. Renew. Sustain. Energy Rev. 40, 868–875 (2014). https://doi.org/10.1016/j.rser.2014.07.204

    Article  Google Scholar 

  18. Liu, H.; Wang, Y.; Yu, T.; Liu, H.; Cai, W.; Weng, S.: Effect of carbon dioxide content in biogas on turbulent combustion in the combustor of micro gas turbine. Renew. Energy 147, 1299–1311 (2020). https://doi.org/10.1016/j.renene.2019.09.014

    Article  Google Scholar 

  19. Kang, D.W.; Kim, T.S.; Hur, K.B.; Park, J.K.: The effect of fixing biogas on the performance and operating characteristics of simple and recuperative cycle gas turbine combined heat and power systems. Appl. Energy 93, 215–228 (2012). https://doi.org/10.1016/j.apenergy.2011.12.038

    Article  Google Scholar 

  20. Liu, A.; Yang, Y.; Chen, L.; Zeng, W.; Wang, C.: Experimental study of biogas combustion and emissions for a micro gas turbine. Fuel (2020). https://doi.org/10.1016/j.fuel.2020.117312

    Article  Google Scholar 

  21. Guessab, A.; Aris, A.; Cheikh, M.; Baki, T.: Combustion of methane and biogas fuels in gas turbine can-type combustor model. J. Appl. Fluid Mech. 9(5), 2229–2238 (2016)

    Google Scholar 

  22. C65 Microturbine High-pressure Natural Gas. https://d1io3yog0oux5.cloudfront.net/_c3fbb9b1ffce43c939f0ae989a647cac/capstoneturbine/db/235/9438/file/C65+High+Pressure+Natural+Gas.pdf. Accessed from Jun 2020

  23. Shih, H.-Y.; Liu, C.-R.: A computational study on the combustion of hydrogen/methane blended fuels for a micro gas turbines. Int. J. Hydrog. Energy 39(27), 15103–15115 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.046

    Article  Google Scholar 

  24. Gray, D.D.; Giorgini, A.: Validity of boussinesq approximation for liquids and gases. Int. J. Heat Mass Transf. 19(5), 545–551 (1976). https://doi.org/10.1016/0017-9310(76)90168-x

    Article  MATH  Google Scholar 

  25. Mardani, A.; Fazlollahi-Ghomshi, A.: Numerical investigation of a double-swirled gas turbine model combustor using a RANS approach with different turbulence-chemistry interaction models. Energy Fuels 30(8), 6764–6776 (2016). https://doi.org/10.1021/acs.energyfuels.6b00452

    Article  Google Scholar 

  26. Nemitallah, M.A.; Habib, M.A.: Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor. Appl. Energy 111, 401–415 (2013). https://doi.org/10.1016/j.apenergy.2013.05.027

    Article  Google Scholar 

  27. Cadorin, M.; Pinelli, M.; Vaccari, A.; Calabria, R.; Chiariello, F.; Massoli, P.; Bianchi, E.: Analysis of a micro gas turbine fed by natural gas and synthesis gas: MGT test bench and combustor CFD analysis. J. Eng. Gas Turbines Power-Trans. Asme (2012). https://doi.org/10.1115/14005977

    Article  Google Scholar 

  28. Zeng, Z.; Du, P.; Wang, Z.; Li, K.: Combustion flow in different advanced vortex combustors with/without vortex generator. Aerosp. Sci. Technol. 86, 640–649 (2019). https://doi.org/10.1016/j.ast.2019.01.048

    Article  Google Scholar 

  29. Smith, G.P.; Golden, D.M..; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Bowman, C.T.; Hanson, R.K.; Song, S.: William C. Gardiner, Jr., Vitali V. Lissianski, and Zhiwei Qin GRI- Mech 3.0. (2014). Accessed from Jun 2020

  30. Meziane, S.; Bentebbiche, A.: Numerical study of blended fuel natural gas-hydrogen combustion in rich/quench/lean combustor of a micro gas turbine. Int. J. Hydrog. Energy 44(29), 15610–15621 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.128

    Article  Google Scholar 

  31. Fortunato, V.; Giraldo, A.; Rouabah, M.; Nacereddine, R.; Delanaye, M.; Parente, A.: Experimental and numerical investigation of a MILD combustion chamber for micro gas turbine applications. Energies (2018). https://doi.org/10.3390/en11123363

    Article  Google Scholar 

  32. Novosselov, I.V.; Malte, P.C.: Asme: Development and application of an eight-step global mechanism for CFD and CRN simulations of lean-premixed combustors. In: Proceedings of the Asme Turbo Expo, Vol 2, (2007)

  33. Manca, D.; Buzzi-Ferraris, G.: The solution of very large non-linear algebraic systems. In: Braunschweig, B., Joulia, X. (eds.) In: 18th European Symposium on Computer Aided Process Engineering, vol. 25. Computer Aided Chemical Engineering, pp. 587–592. (2008)

  34. Dang, B.: Numerical study and investigation of annular combustor of micro gas turbine. Theses, Shanghai Jiao Tong Univ. (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhou, W., Jia, Y. et al. Numerical Analysis of the Combustion in Micro Gas Turbine with Methane/Biogas Fuels. Arab J Sci Eng 46, 11897–11907 (2021). https://doi.org/10.1007/s13369-021-05731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05731-3

Keywords

Navigation