Skip to main content
Log in

Analysis of Boundary Value and Extremum Problems for a Nonlinear Reaction–Diffusion–Convection Equation

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

The global solvability of boundary value problems for the reaction–diffusion–convection equation is proved for the case in which the reaction coefficient in the equation and the mass transfer coefficient in the boundary condition nonlinearly depend on the substance concentration. The minimum and maximum principle for the concentration is established. The solvability of multiplicative control problems is proved in general form. Optimality systems are derived and the presence of the bang-bang principle is established for extremum problems under the assumption that the performance functionals and the solution-dependent coefficients of the model are Fréchet differentiable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Îto, K. and Kunish, K., Estimation of the convection coefficient in elliptic equations, Inverse Probl., 1997, vol. 14, pp. 995–1013.

    Article  MathSciNet  Google Scholar 

  2. Nguyen, P.A. and Raymond, J.-P., Control problems for convection–diffusion equations with control localized on manifolds, ESAIM: Control Optim. Calculus Var., 2001, vol. 6, pp. 467–488.

    MathSciNet  MATH  Google Scholar 

  3. Korotkii, A.I. and Kovtunov, D.A., Optimal boundary control of a system describing heat convection, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2006, vol. 16, no. 1, pp. 76–101.

    Google Scholar 

  4. Alekseev, G.V., Soboleva, O.V., and Tereshko, D.A., Identification Problems for stationary mass-transfer model, Prikl. Mekh. Tekh. Fiz., 2008, no. 4, pp. 24–35.

  5. Nguyen, P.A. and Raymond, J.-P., Pointwise control of the Boussinesq system, Systems Contr. Lett., 2011, vol. 60, pp. 249–255.

    Article  MathSciNet  Google Scholar 

  6. Alekseev, G.V. and Tereshko, D.A., Two-parameter extremum problems of boundary control for stationary thermal convection equations, Comput. Math. Math. Phys., 2011, vol. 51, no. 9, pp. 1645–1664.

    Article  MathSciNet  Google Scholar 

  7. Kovtanyuk, A.E. and Chebotarev, A.Yu., Stationary free convection problem with radiative heat exchange, Differ. Equations, 2014, vol. 50, no. 12, pp. 1590–1597.

    Article  MathSciNet  Google Scholar 

  8. Kovtanyuk, A.E., Chebotarev, A.Yu., Botkin, N.D., and Hoffmann, K.-H., Optimal boundary control of a steady-state heat transfer model accounting for radiative effects, J. Math. Anal. Appl., 2016, vol. 439, pp. 678–689.

    Article  MathSciNet  Google Scholar 

  9. Alekseev, G.V. and Levin, V.A., An optimization method for the problems of thermal cloaking of material bodies, Dokl. Phys., 2016, vol. 61, no. 11, pp. 546–550.

    Article  Google Scholar 

  10. Brizitskii, R.V. and Saritskaya, Zh.Yu., Stability of solutions of control problems for the convection–diffusion–reaction equation with a strong nonlinearity, Differ. Equations, 2017, vol. 53, no. 4, pp. 485–496.

    Article  MathSciNet  Google Scholar 

  11. Brizitskii, R.V. and Saritskaya, Zh.Yu., Optimization analysis of the inverse coefficient problem for the nonlinear convection–diffusion–reaction equation, J. Inverse Ill-Posed Probl., 2018, vol. 26, no. 6, pp. 821–833.

    Article  MathSciNet  Google Scholar 

  12. Brizitskii, R.V. and Saritskaya, Zh.Yu., Inverse coefficient problems for a non-linear convection–diffusion–reaction equation, Izv. Math., 2018, vol. 82, no. 1, pp. 14–30.

    Article  MathSciNet  Google Scholar 

  13. Belyakov, N.S., Babushok, V.I., and Minaev, S.S., Influence of water mist on propagation and suppression of laminar premixed, Combustion Theory Model., 2018, vol. 22, no. 2, pp. 394–409.

    Article  MathSciNet  Google Scholar 

  14. Alekseev, G.V., Vakhitov, I.S., and Soboleva, O.V., Stability estimates in identification problems for the convection-diffusion-reaction equation, Comput. Math. Math. Phys., 2012, vol. 52, no. 12, pp. 1635–1649.

    Article  MathSciNet  Google Scholar 

  15. Lions, J.L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris: Dunod–Gauthier-Villars, 1969. Translated under the title: Nekotorye metody resheniya nelineinykh kraevykh zadach, Moscow: Mir, 1972.

    MATH  Google Scholar 

  16. Ladyzhenskaya, O.N. and Ural’tseva, N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa (Linear and Quasilinear Equations of Elliptic Type), Moscow–Leningrad: Nauka, 1964.

    Google Scholar 

  17. Gilbarg, D. and Trudinger, N.S., Elliptic Partial Differential Equations of Second Order, Berlin–Heidelberg: Springer, 1977. Translated under the title: Ellipticheskie differentsial’nye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Moscow: Nauka, 1989.

    Book  Google Scholar 

  18. Berninger, H., Non-overlapping domain decomposition for the Richards equation via superposition operators, Domain Decomposition Methods Sci. Eng. XVIII (Jerusalem, 2009), pp.~169--176.

  19. Alekseev, G.V. and Brizitskii, R.V., Stability estimates for solutions of control problems for the Maxwell equations with mixed boundary conditions, Differ. Equations, 2013, vol. 49, no. 8, pp. 993–1004.

    Article  MathSciNet  Google Scholar 

  20. Alekseev, G.V., Stability estimates in the problem of cloaking material bodies for Maxwell’s equations, Comput. Math. Math. Phys., 2014, vol. 54, no. 12, pp. 1863–1878.

    Article  MathSciNet  Google Scholar 

  21. Fursikov, A.V., Optimal’noe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya (Optimal Control of Distributed Systems. Theory and Applications), Novosibirsk: Nauchn. Kniga, 1999.

    Book  Google Scholar 

  22. Lions, J.L., Contrôle optimal de systèmes gouvernés par des équations dérivées partielles, Paris: Dunod–Gauthier-Villars, 1968. Translated under the title: Optimal’noe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Moscow: Mir, 1972.

    MATH  Google Scholar 

  23. Alekseev, G.V. and Tereshko, D.A., Particle swarm optimization-based algorithms for solving inverse problems of designing thermal cloaking and shielding devices, Int. J. Heat Mass Transfer, 2019, vol. 135, pp. 1269–1277.

    Article  Google Scholar 

Download references

Funding

The research by R.V. Brizitskii and Zh.Yu. Saritskaia was carried out in the framework of the State Order for the Institute of Applied Mathematics of the Far East Branch of the Russian Academy of Sciences, topic no. 075-01095-20-00. The research by V.S. Bystrova was supported by the RF Ministry for Science and Higher Education, project no. 075-15-2019-1878.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. V. Brizitskii, V. S. Bystrova or Zh. Yu. Saritskaia.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brizitskii, R.V., Bystrova, V.S. & Saritskaia, Z.Y. Analysis of Boundary Value and Extremum Problems for a Nonlinear Reaction–Diffusion–Convection Equation. Diff Equat 57, 615–629 (2021). https://doi.org/10.1134/S0012266121050062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266121050062

Navigation