Skip to main content

Advertisement

Log in

Economic and management value of weed maps at harvest in semi-arid cropping systems of the US Pacific Northwest

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Weed maps created late in the growing season are potentially useful in regions where late maturing weeds are problematic and need to be controlled before they produce seed. The objectives of this study were to (1) spatially characterize the population dynamics of predominant weed species and apply this information into quantifying the effect of treated and untreated weed infestations on wheat (Triticum aestivum L.) yields and (2) evaluate potential herbicide savings with post-harvest site-specific treatments. Multi-year grain yield and weed data were acquired at harvest in each of four years (2015–18) within a dryland production field (9.2 ha) in eastern Oregon. Abundance of weed species (2015) and percent cover of weed species (2016, 2017 and 2018) were visually estimated on a square grid based on dividing the field into 7-m2 cells. Spatial patterns in the weed community were subject to rapid change and depended on year, crop and weed control strategy. While tumble mustard (Sisymbrium altissimum) was the most predominant and competitive species, the spatial distribution of this weed and that of other species varied each year. Tumble mustard and prickly lettuce (Lactuca serriola) were equally problematic in spring wheat and winter wheat whereas Russian thistle (Salsola tragus) was problematic in spring wheat and downy brome (Bromus tectorum) in winter wheat. Potential savings from site-specific herbicide application varied from 10 to 95% based on percentage of field infested. Weed maps at harvest are useful for studying weed dynamics, identifying potentially herbicide-resistant weeds and planning site-specific weed management. Combined with yield maps, weed maps at harvest are also useful for explaining crop yield variability that is associated with weed competition and weed control in furtherance of integrated weed management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcocer-Ruthling, M., Thill, D. C., & Mallory-Smith, C. A. (1992). Monitoring the occurrence of sulfonylurea-resistant prickly lettuce (Lactuca serriola). Weed Technology, 6, 437–440.

    Article  CAS  Google Scholar 

  • Allen, M. F., Allen, E. B., & Friese, C. F. (1988). Responses of the non-mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytology, 111, 45–49.

    Article  Google Scholar 

  • Bajwa, A. A., Walsh, M., & Chauhan, B. S. (2017). Weed management using crop competition in Australia. Crop Protection, 95, 8–13.

    Article  Google Scholar 

  • Barroso, J., Fernández-Quintanilla, C., Maxwell, B. D., & Rew, L. J. (2004). Simulating the effects of weed spatial pattern and resolution of mapping and spraying on economics of site-specific management. Weed Research, 44, 460–468.

    Article  Google Scholar 

  • Barroso, J., & Gourlie, J. A. (2016). Problematic weed species in Northeast Oregon. Oregon Wheat Magazine, pp. 10–11.

  • Barroso, J., Gourlie, J. A., Lutcher, L. K., Mingyang Liuc, M., & Mallory-Smith, C. A. (2018). Identification of glyphosate resistance in Salsola tragus in north-eastern Oregon. Pest Management Science, 74, 1089–1093.

    Article  CAS  Google Scholar 

  • Barroso, J., McCallum, J., & Long, D. (2017). Optical sensing of weed infestations at harvest. Sensors, 17, 1–12. https://doi.org/10.3390/s17102381

    Article  Google Scholar 

  • Barroso, J., Ruiz, D., Fernández-Quintanilla, C., Leguizamón, E. S., Hernáiz, P., Ribeiro, A., et al. (2005). Comparison of sampling methodologies for site-specific management of Avena sterilis. Weed Research, 45, 165–174.

    Article  Google Scholar 

  • Beckie, H. J., Ashworth, M. B., & Flower, K. C. (2019). Herbicide resistance management: Recent developments and trends. Plants 8(6), 161. https://doi.org/10.3390/plants8060161

  • Blackshaw, R. E. (1993). Downy Brome (Bromus tectorum) density and relative time of emergence affects interference in winter wheat (Triticum aestivum). Weed Science, 41, 551–556.

    Article  Google Scholar 

  • Blanco-Moreno, J. M., Chamorro, L., Izquierdo, J., Masalles, R. M., & Sans, F. X. (2008). Modelling within-field spatial variability of crop biomass - weed density relationships using geographically weighted regression. Weed Research, 48, 512–522.

    Article  Google Scholar 

  • Brim-DeForest, W. B., Al-Khatib, K., & Fischer, A. J. (2017). Predicting yield losses in rice mixed-weed species infestations in California. Weed Science, 65, 61–72.

    Article  Google Scholar 

  • Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 28, 281–298.

    Article  Google Scholar 

  • Burke, I. C., Yenish, J. P., Pittmann, D., & Gallagher, R. S. (2009). Resistance of a prickly lettuce (Lactuca serriola) biotype to 2,4-D. Weed Technology, 23, 586–591.

    Article  CAS  Google Scholar 

  • Castillejo-Gonzalez, I. L., de Castro, A. I., Jurado-Expósito, M., Pena, J. M., García-Ferrer, A., López-Granados, F., et al. (2019). Assessment of the persistence of Avena sterilis L. patches in wheat fields for site-specific sustainable management. Agronomy-Basel, 9(1), 30. https://doi.org/10.3390/agronomy9010030

    Article  Google Scholar 

  • Chepil, W. S. (1946). Germination of weed seeds. 1. Longevity, periodicity of germination and vitality of seeds in cultivated soil. Scientific Agriculture, 26, 307–346.

    Google Scholar 

  • Dicke, D., Gerhards, R., Buchse, A., & Hurle, K. (2007). Modeling spatial and temporal dynamics of Chenopodium album L. under the influence of site-specific weed control. Crop Protection, 26, 206–211.

    Article  Google Scholar 

  • Esposito, M., Crimaldi, M., Cirillo, V., Sarghini, F., & Maggio, A. (2021). Drone and sensor technology for sustainable weed management: a review. Chemical and Biological Technologies in Agriculture, 8(1), Article Number: 18. https://doi.org/10.1186/s40538-021-00217-8.

  • Fernández-Quintanilla, C., Peña, J. M., Andújar, D., Dorado, J., Ribeiro, A., & López-Granados, F. (2018). Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops? Weed Research, 58, 259–272.

    Article  Google Scholar 

  • Freckleton, R. P., Sutherland, W. J., Watkinson, A. R., & Stephens, P. A. (2008). Modelling the effects of management on population dynamics: some lessons from annual weeds. Journal of Applied Ecology, 45, 1050–1058.

    Article  Google Scholar 

  • Gaba, S., Caneill, J., Nicolardot, B., Perronne, R., & Bretagnolle, V. (2018). Crop competition in winter wheat has a higher potential than farming practices to regulate weeds. Ecosphere, 9(10), 1–17. https://doi.org/10.1002/ecs2.2413

    Article  Google Scholar 

  • González-Andújar, J. L., & Bastida, F. (2018). Modeling the population dynamics of a community of two grass weeds of winter wheat in a Mediterranean Area. International Journal of Plant Production, 12, 219–223.

    Article  Google Scholar 

  • Heap, I. (2019). The international survey of herbicide resistant weeds. www.weedscience.com. Accessed 18 Oct 2019.

  • Hooftman, D. A. P., Oostermeijer, J. G. B., & Den Nijs, J. C. M. (2006). Invasive behaviour of Lactuca serriola (Asteraceae) in the Netherlands: Spatial distribution and ecological amplitude. Basic Applied Ecology, 7(6), 507–519.

    Article  Google Scholar 

  • Hulbert, L. C. (1955). Ecological studies of Bromus tectorum and other annual bromegrasses. Ecological Monographs, 25, 181–213.

    Article  Google Scholar 

  • Jeschke, M. R., Stoltenberg, D. E., Kegode, G. O., Sprague, C. L., Knezevic, S. Z., Hock, S. M., et al. (2011). Predicted soybean yield loss as affected by emergence time of mixed-species weed communities. Weed Science, 59, 416–423.

    Article  CAS  Google Scholar 

  • Kumar, V., Jha, P., Jugulam, M., Yadav, R., & Stahlman, P. W. (2019). Herbicide-Resistant Kochia (Bassia scoparia) in North America: A Review. Weed Science, 67, 4–15.

    Article  Google Scholar 

  • Lamb, D. W., Frazier, P., & Adams, P. (2008). Improving pathways to adoption: Putting the right P’s in precision agriculture. Computers and Electronics in Agriculture, 61, 4–9.

    Article  Google Scholar 

  • Lati, R. N., Rasmussen, J., Andujar, D., Dorado, J., Berge, T. W., Wellhausen, C., et al. (2021). Site-specific weed management-constraints and opportunities for the weed research community: Insights from a workshop. Weed Research. https://doi.org/10.1111/wre.12469

    Article  Google Scholar 

  • Long, D. S., & McCallum, J. D. (2015). On-combine, multi-sensor data collection for post-harvest assessment of environmental stress in wheat. Precision Agriculture, 16, 492–504.

    Article  Google Scholar 

  • López-Granados, F. (2011). Weed detection for site-specific weed management: mapping and real-time approaches. Weed Research, 51, 1–11.

    Article  Google Scholar 

  • López-Granados, F., Torres-Sánchez, J., Serrano-Perez, A., Castro, A. I., Mesas-Carrascosa, F. J., Peña, J. M., et al. (2016). Early season weed mapping in sunflower using UAV technology: variability of herbicide treatment maps against weed thresholds. Precision Agriculture, 17, 183–199.

    Article  Google Scholar 

  • Lotz, L. A. P., Christensen, S., Cloutier, D., Quintanilla, C. F., Legere, A., Lemieux, C., et al. (1996). Prediction of the competitive effects of weeds on crop yields based on the relative leaf area of weeds. Weed Research, 36, 93–101.

    Article  Google Scholar 

  • Pena, J. M., Torres-Sanchez, J., Isabel de Castro, A., Kelly, M., & Lopez-Granados, F. (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. Plos One. https://doi.org/10.1371/journal.pone.0077151

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmussen, J., Azim, S., Nielsen, J., Mikkelsen, B. F., Hørfarter, R., & Christensen, S. (2020). A new method to estimate the spatial correlation between planned and actual patch spraying of herbicides. Precision Agriculture, 21, 713–728.

    Article  Google Scholar 

  • Rasmussen, J., Nielsen, J., Streibig, J. C., Jensen, J. E., Pedersen, K. S., & Olsen, S. I. (2019). Pre-harvest weed mapping of Cirsium arvense in wheat and barley with off-the-shelf UAVs. Precision Agriculture, 20, 983–999.

    Article  Google Scholar 

  • Renka, R. J. (1988). Multivariate interpolation of large sets of scattered data. ACM Transactions in Mathematical Software, 14, 139–148.

    Article  Google Scholar 

  • Ritter, C., Dicke, D., Weis, M., Oebel, H., Piepho, H. P., Büchse, A., et al. (2008). An on-farm approach to quantify yield variation and to derive decision rules for site-specific weed management. Precision Agriculture, 9, 133–146.

    Article  Google Scholar 

  • Rodriguez, J. A., Zuger, R. J., Hauvermale, A. L., & Burke, I. C. (2018). Cross resistance patterns in multiple ALS-resistant downy brome (Bromus tectorum L.) Accessions from Washington. In Proceedings of the Western Society of Weed Science, 71, 17–18. http://www.wsweedscience.org/wp-content/uploads/WSWS_2018_Proceedings-Corrected-1.pdf. Accessed 22 July 2020.

  • Royer, F., & Dickinson, R. (1999). Weeds of the Northern US and Canada (pp. 44–45). The University of Alberta Press and Lone Pine Publishing.

    Google Scholar 

  • Rstudio Team (2015). Integrated Development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/. Accessed 8 Aug 2019.

  • Ruixiu, S., Thomasson, J. A., Hanks, J., & Wooten, J. (2008). Ground-based system for weed mapping in cotton. Computers and Electronics in Agriculture, 60, 31–38.

    Article  Google Scholar 

  • Rydrych, D. J., & Muzik, T. J. (1968). Downy brome competition and control in dryland wheat. Agronomy Journal, 60, 279–280.

    Article  Google Scholar 

  • Schillinger, W. F., & Young, F. L. (2000). Soil water use and growth of Russian thistle after wheat harvest. Agronomy Journal, 92, 167–172.

    Article  Google Scholar 

  • Sebastian, D. J., Nissen, S. J., Sebastian, J. R., & Beck, K. G. (2017). Seed bank depletion: The key to long-term downy brome (Bromus tectorum l.) management. Rangeland Ecology and Management, 70(4), 477–483.

    Article  Google Scholar 

  • Stahlman, P. W., & Miller, S. D. (1990). Downy brome (Bromus tectorum) interference and economic thresholds in winter wheat (Triticum aestivum). Weed Science, 38, 224–228.

    Article  Google Scholar 

  • Upadhyaya, M. K., Turkington, R., & McIlvride, D. (1986). The biology of Canadian weeds. 75. Bromus tectorum L. Canadian Journal of Plant Science, 66, 689–709.

    Article  Google Scholar 

  • Van der Meulen, A., & Chauhan, B. S. (2017). A review of weed management in wheat using crop competition. Crop Protection, 95, 38–44.

    Article  Google Scholar 

  • Weaver, S., Cluncy, K., Downs, M., & Page, E. (2006). Prickly lettuce (Lactuca serriola) interference and seed production in soybeans and winter wheat. Weed Science, 54, 496–503.

    Article  CAS  Google Scholar 

  • Weed Science Society of America (WSSA). (1984). Composite list of weeds arranged by scientific name. Weed Science, 32(S2) (Supplement 2: Composite List of Weeds), (pp. 3–137).

  • Whitson, T. D., Parker, R., Cudney, D., Ball, D. A., Dewey, S. A., Morishita D. W. et al. (2009). Weeds of the West. 10th (ed.) Jackson, WY, USA: Western Society of Weed Science in Collaboration with the Western United States Land Grant Universities Cooperative Extension Services (pp.154–155).

  • Wicks, G. A., Burnside, O. C., & Fenster, C. R. (1971). Influence of soil type and depth of planting on downy brome seed. Weed Science, 19, 82–86.

    Article  Google Scholar 

  • Yorgey, G., Kantor, S., Painter, K., Roe, D., Davis, H., & Bernacchi, L. (2016). Flex cropping and precision agriculture technologies, Bill Jepsen. Farmer-to-Farmer Case Study. A Pacific Northwest Extension Publication, PNW681. Washington State University, USA.

Download references

Acknowledgements

Authors thank the Oregon Wheat Commission for partially funding this research, Jennifer Gourlie for data collection and Steve Umbarger for field harvest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Barroso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barroso, J., San Martin, C., McCallum, J.D. et al. Economic and management value of weed maps at harvest in semi-arid cropping systems of the US Pacific Northwest. Precision Agric 22, 1936–1951 (2021). https://doi.org/10.1007/s11119-021-09819-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-021-09819-6

Keywords

Navigation