Skip to main content
Log in

Quasiperiodic Route to Chaos for the Dust Ion Acoustic Waves in Magnetized Dusty Plasmas

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Quasiperiodic and chaotic features of the dust ion acoustic (DIA) waves in a magnetized dusty plasma is studied. Reductive perturbation technique (RPT) is used to derive the damped forced Kadomtsev–Petviashvili (KP) equation. The effect of the dust ion collisional frequency (νid0) on the quasiperiodic and chaotic motion of the DIA waves is studied. It is observed that in absence of dust–ion collisions, the DIA waves exhibit quasiperiodic behavior and the motion becomes chaotic while the dust–ion collisions are taken into consideration. Thus, the dust–ion collisional frequency (νid0) plays the role of switching parameter from quasiperiodic motion to chaotic motion for the DIA waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. F. Verheest, Waves in Dusty Space Plasmas (Kluwer A-cademic, Dordrecht, 2000).

    Book  Google Scholar 

  2. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).

    Book  Google Scholar 

  3. Dusty Plasmas: Physics, Chemistry, and Technological Impacts in Plasma Processing, Ed. by A. Bouchoule (Wiley, NewYork, 1999).

    Google Scholar 

  4. X. Wang, A. Bhattacharjee, S. K. Gou, and J. Goree, Phys. Plasmas 8, 5018 (2001).

    Article  ADS  Google Scholar 

  5. D. A. Mendis, Plasma Sources Sci. Technol. 11, A219 (2002).

    Article  ADS  Google Scholar 

  6. S. K. El-Labany, E. F. El-Shamy, and S. A. El-Warraki, Astrophys. Space Sci. 315, 287 (2008).

    Article  ADS  Google Scholar 

  7. S. K. El-Labany, M. Shalaby, E. F. El-Shamy, and L. S. El-Sherif, Planet. Space Sci. 57 1246 (2009).

    Article  ADS  Google Scholar 

  8. N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).

    Article  ADS  Google Scholar 

  9. P. K. Shukla, M. Y. Yu, and R. Bharuthram, J. Geophys. Res. 96, 21343 (1991).

    Article  ADS  Google Scholar 

  10. P. K. Shukla and R. K. Varma, Phys. Fluids B 5, 236 (1993).

    Article  ADS  Google Scholar 

  11. F. Melandso, Phys. Plasmas 3, 3890 (1996).

    Article  ADS  Google Scholar 

  12. R. L. Merlino, A. Barkan, C. Thomson, and N. D’Angelo, Phys. Plasmas 5, 1607 (1998).

    Article  ADS  Google Scholar 

  13. I. Kourakis and P. K. Shukla, Eur. Phys. J. D 30, 97 (2004).

    Article  ADS  Google Scholar 

  14. M. Tribeche and T. H. Zerguini, Phys. Plasmas 11, 4115 (2004).

    Article  ADS  Google Scholar 

  15. P. K. Shukla and V. P. Silin, Phys. Scr. 45, 508 (1992).

    Article  ADS  Google Scholar 

  16. A. Barkan, N. D’Angelo, and R. L. Merlino, Planet. Space Sci. 44, 239 (1996).

    Article  ADS  Google Scholar 

  17. M. G. M. Anowar and A.A. Mamun, Phys. Lett. A 372, 5896 (2008).

    Article  ADS  Google Scholar 

  18. S. A. Khan, A. Mushtaq, and W. Masood, Phys. Plasmas 15, 013701 (2008).

  19. T. V. Losseva, S. I. Popel, A. P. Golub’, and P. K. Shukla, Phys. Plasmas 16, 093704 (2009).

  20. W. M. Moslem and W. F. El-Taibany, Phys. Plasmas 12, 122309 (2005).

  21. T. V. Losseva, S. I. Popel, and A. P. Golub’, Plasma Phys. Reports 38, 729 (2012).

    Article  ADS  Google Scholar 

  22. T. V. Losseva, S. I. Popel, A. P. Golub’, and P. K. Shukla, Phys. Plasmas 19, 013703 (2012).

  23. C. Cui and J. Goree, IEEE Trans. Plasma Sci. 22, 151 (1994).

    Article  ADS  Google Scholar 

  24. R. A. Quinn and J. Goree, Phys. Rev. E 61, 3033 (2000).

    Article  ADS  Google Scholar 

  25. A. V. Ivlev, A. Lazarian, V. N. Tsytovich, U. de Angelis, T. Hoang, and G. E. Morfill, Astrophys. J. 723, 612 (2010).

    Article  ADS  Google Scholar 

  26. O. S. Vaulina, A. P. Nefedov, O. F. Petrov, and S. A. Khrapak, J. Exp. Theor. Phys. 88, 1130 (1999).

    Article  ADS  Google Scholar 

  27. S. I. Popel, M. Y. Yu, and V. N. Tsytovich, Phys. Plasmas 3, 4313 (1996).

    Article  ADS  Google Scholar 

  28. S. I. Popel, A. A. Gisko, A. P. Golub’, T. V. Losseva, R. Bingham, and P. K. Shukla, Phys. Plasmas 7, 2410 (2000).

    Article  ADS  Google Scholar 

  29. S. K. Baishya, G. C. Das, and J. C. Hutia, Pramana J. Phys. 55, 861 (2000).

    Google Scholar 

  30. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  ADS  Google Scholar 

  31. A. Rényi, Acta Math. Acad. Sci. Hung. 6, 285 (1955).

    Article  Google Scholar 

  32. R. Amour and M. Tribeche, Phys. Plasmas 17, 063702 (2010).

  33. H. R. Pakzad, Phys. Scr. 83, 105505 (2011).

  34. A. Saha and P. Chatterjee, Astrophys. Space Sci. 353,169 (2014).

    Article  ADS  Google Scholar 

  35. A. Saha and P. Chatterjee, Astrophys. Space Sci. 351, 533 (2014).

    Article  ADS  Google Scholar 

  36. J. A. S. Lima, R. Silva, Jr., and J. Santos, Phys. Rev. E 61, 3260 (2000).

    Article  ADS  Google Scholar 

  37. A. Sen, S. Tiwary, S. Mishra, and P. Kaw, Adv. Space Res. 56, 429 (2015).

    Article  ADS  Google Scholar 

  38. L. Perek, Space Debris 2, 123 (2000).

    Article  Google Scholar 

  39. D. F. S. Portree and J. P. Loftus, Orbital Debris: A Chronology, NASA Technical Report NASA/TP-1999-208856 (NASA, Washington, DC, 1999).

  40. O. Havnes, T. K. Aanesan, and F. Melandso, J. Geophys. Res. 95, 6581 (1990).

    Article  ADS  Google Scholar 

  41. M. J. Mandell, V. A. Davis, G. T. Davis, R. H. Maurer, and C. Herrmann, IEEE Trans. Plasma Sci. 40, 209 (2012).

    Article  ADS  Google Scholar 

  42. R. Ali, A. Saha, and P. Chatterjee, Phys. Plasmas 24, 122106 (2017).

  43. M. Hashemzadeh, Phys. A 459, 68 (2016).

    Article  MathSciNet  Google Scholar 

  44. H. L. Zhen, B. Tian, Y. F. Wang, W. R. Sun, and L. C. Liu, Phys. Plasmas 21, 073709 (2014).

  45. A. Saha and P. Chatterjee, Eur. J. Phys. D 69, 203 (2015).

    Article  ADS  Google Scholar 

  46. R. Ali, A. Saha, and P. Chatterjee, Indian J. Phys. 91, 689 (2017).

    Article  ADS  Google Scholar 

  47. J. A. Yorke and K. T. Alligood, Commun. Math. Phys. 101, 305 (1985).

    Article  ADS  Google Scholar 

  48. Y. Pomeau and P. Manneville, Commun. Math. Phys. 74, 189 (1980).

    Article  ADS  Google Scholar 

  49. C. Grebogi, E. Ott, and J. A. Yorke, Phys. D 7, 181 (1983).

    Article  MathSciNet  Google Scholar 

  50. T. K. Das, A. Saha, N. Pal, and P. Chatterjee, Phys. Plasmas 24, 073707 (2017).

  51. U. N. Ghosh, P. Chatterjee, and R. Roychoudhury, Phys. Plasmas 19, 012113 (2012).

  52. S. K. El-Labany, W. F. El-Taibany, E. E. Behery, and S. M. Fouda, Phys. Plasmas 25, 013701 (2018).

  53. U. K. Samanta, A. Saha, and P. Chatterjee, Phys. Plasmas 20, 052111 (2013).

  54. A. S. Bains, M. Tribeche, and T. S. Gill, Phys. Plasmas 18, 022108 (2011).

  55. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

  56. S. Chowdhury, L. Mandi, and P. Chatterjee, Phys. Plasmas 25, 042112 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Mandi, R. Ali or P. Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandi, L., Ali, R. & Chatterjee, P. Quasiperiodic Route to Chaos for the Dust Ion Acoustic Waves in Magnetized Dusty Plasmas. Plasma Phys. Rep. 47, 419–426 (2021). https://doi.org/10.1134/S1063780X2105007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X2105007X

Keywords:

Navigation