Skip to main content
Log in

Investigation of the Protective Plasma-Facing Graphite In-Vessel Components of T-15MD Tokamak by Steady-State Plasma Loads in the PLM Device and by Powerful Electron Beams

  • PLASMA–SURFACE INTERACTIONS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Studies of samples of graphite heat-shielding facing of the T-15MD tokamak chamber with stationary plasma loads in the PLM plasma device and high-power electron beams simulating loads during ELMs and transient processes were carried out. When the graphite facing samples were tested with plasma loads up to 2 MW/m2, their surface temperature reached more than 1200°C, the surface heating did not lead to cracking, a change in the relief, or significant erosion of the graphite surface. The plasma action led to the growth of a layer of highly porous carbon structures on the surface in the zone of contact with the plasma column. Irradiation of graphite with electron beams with a load of less than 12 MW/m2 did not lead to changes in the surface structure; at a load exceeding 24 MW/m2, the processes of erosion and cracking of the surface along the grain boundaries began. At thermal cyclic loads exceeding 380 MW/m2, effects of significant erosion were observed with a rate of material removal from the graphite surface up to 175 μm/s. The conducted experimental studies and tests are considered as the basis for using the investigated type of graphite as the facing of heat-shielding components of the divertor and the first wall for operation in the T-15MD tokamak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. B. B. Kadomtsev, Tokamak Pasma: a Complex Physical System, Ed. by E. W. Laing (IOP, Bristol, 1992).

    Google Scholar 

  2. V. P. Budaev, Phys. Lett. A 381, 3706 (2017). https://doi.org/10.1016/j.physleta.2017.09.038

    Article  ADS  Google Scholar 

  3. V. P. Budaev, S. A. Grashin, A. V. Karpov, S. V. Kraevskii, and L. N. Khimchenko, JETP Lett. 95, 78 (2012). https://doi.org/10.1134/S0021364012020038

    Article  ADS  Google Scholar 

  4. J. Linkea, J. Du, T. Loewenhoff, G. Pintsuk, B. Spilker, I. Steudel, and M. Wirtz, Matter Radiat. Extremes 4, 056201 (2019). https://doi.org/10.1063/1.5090100

  5. Y. Ueda, K. Schmid, M. Balden, J. W. Coenen, T. W. Loewenhoff, A. Ito, A. Hasegawa, C. D. Hardie, M. Porton, and M. R. Gilbert, Nucl. Fusion 57, 092006 (2017). https://doi.org/10.1088/1741-4326/aa6b60

  6. G. Federici, C. H. Skinner, J. N. Brooks, J. P. Coad, C. Grisolia, A. A. Haasz, A. Hassanein, V. Philipps, C. S. Pitcher, J. Roth, W. R. Wampler, and D. G. Whyte, Nucl. Fusion 41, 1967 (2001). https://doi.org/10.1088/0029-5515/41/12/218

    Article  ADS  Google Scholar 

  7. J. Linke, in Proceedings of the 5th International Workshop and Summer School on Plasma Physics, Kudowa Zdroj, 2005, Phys. Scr. T123, 45 (2006). https://doi.org/10.1088/0031-8949/2006/T123/006

    Article  ADS  Google Scholar 

  8. K. Maruyama, W. Jacob, and J. Roth, J. Nucl. Mater. 264, 56 (1999). https://doi.org/10.1016/S0022-3115(98)00481-4

    Article  ADS  Google Scholar 

  9. J. Winter and G. J. Gebauer, J. Nucl. Mater. 266−269, 228 (1999). https://doi.org/10.1016/S0022-3115(98)00526-1

  10. M. Rubel, M. Cecconello, J. A. Malmberg, G. Sergienko, W. Biel, J. R. Drake, A. Hedqvist, A. Huber, and V. Philipps, Nucl. Fusion 41, 1087 (2001). https://doi.org/10.1088/0029-5515/41/8/312

    Article  ADS  Google Scholar 

  11. V. Philipps, P. Wienhold, A. Kirschner, and M. Rubel, Vacuum 67, 399 (2002). https://doi.org/10.1016/S0042-207X(02)00238-5

    Article  ADS  Google Scholar 

  12. A. Zhitlukhin, N. Klimov, I. Landman, J. Linke, A. Loarte, M. Merola, V. Podkovyrov, G. Federici, B. Bazylev, S. Pestchanyi, V. Safronov, T. Hirai, V. Maynashev, V. Levashov, and A. Muzichenko, J. Nucl. Mater. 363−365, 301 (2007). https://doi.org/10.1016/j.jnucmat.2007.01.027

  13. V. P. Budaev, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 38 (4), 5 (2015). https://doi.org/10.21517/0202-3822-2015-38-4-5-33

    Article  Google Scholar 

  14. P. P. Khvostenko, I. O. Anashkin, E. N. Bondarchuk, N. V. Inyutin, V. A. Krylov, I. V. Levin, A. B. Mineev, and M. M. Sokolov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 42 (1), 15 (2019). https://doi.org/10.21517/0202-3822-2019-42-1-15-38

    Article  Google Scholar 

  15. V. P. Budaev, JETP Lett. 105, 307 (2017).

    Article  ADS  Google Scholar 

  16. Yu. L. Igitkhanov, S. I. Krasheninnikov, A. S. Kukushkin, and P. N. Yushmanov, in Advances in Science and Technology, Ser. Plasma Physics, Ed. by V. D. Shafranov (VINITI, Moscow, 1990), Vol. 11, p. 6 [in Russian].

    Google Scholar 

  17. P. C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (IOP, Bristol, 2000).

    Book  Google Scholar 

  18. V. P. Budaev, S. D. Fedorovich, M. V. Lukashevskii, Yu. V. Martynenko, M. K. Gubkin, A. V. Karpov, A. V. Lazukin, and V. A. Shestakov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 40 (3), 23 (2017). https://doi.org/10.21517/0202-3822-2017-40-3-23-36

    Article  Google Scholar 

  19. V. K. Dragunov, A. P. Sliva, E. V. Terentyev, A. L. Goncharov, A. Yu. Marchenkov, and M. A. Portnov, Elektrotech. Elektron. E+E 53 (5−6), 112 (2018).

  20. Yu. V. Martynenko and M Yu. Nagel’, Plasma Phys. Rep. 38, 996 (2012).

    Article  ADS  Google Scholar 

  21. V. P. Budaev, Yu. V. Martynenko, L. N. Khimchenko, A. M. Zhitlukhin, N. S. Klimov, R. A. Pitts, J. Linke, B. N. Bazylev, N. E. Belova, A. V. Karpov, D. V. Kovalenko, V. L. Podkovyrov, and A. D. Yaroshevskaya, Plasma Phys. Rep. 39, 910 (2013). https://doi.org/10.1134/S1063780X13110032

    Article  ADS  Google Scholar 

  22. N. S. Klimov, J. Linke, R. A. Pitts, A. M. Zhitlukhin, D. V. Kovalenko, V. L. Podkovyrov, V. A. Barsuk, C. Thomser, G. Pintsuk, B. N. Bazylev, R. N. Giniyatulin, V. P. Budaev, and L. N. Khimchenko, J. Nucl. Mater. 438 (Suppl.), S241 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.036

    Article  Google Scholar 

  23. V. I. Krauz, Yu. V. Martynenko, N. Yu. Svechnikov, V. P. Smirnov, V. G. Stankevich, and L. N. Khimchenko, Phys.–Usp. 53, 1015 (2010).

  24. A. L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995). https://doi.org/10.1017/CBO9780511599798

    Book  MATH  Google Scholar 

  25. V. P. Budaev, S. P. Savin, and L. M. Zelenyi, Phys.–Usp. 54, 875 (2011). https://doi.org/10.3367/UFNe.0181.201109a.0905

    Article  Google Scholar 

  26. V. P. Budaev, Yu. V. Martynenko, A. V. Karpov, N. E. Belova, A. M. Zhitlukhin, N. S. Klimov, V. L. Podkovyrov, V. A. Barsuk, A. B. Putrik, A. D. Yaroshevskaya, V. M. Safronov, R. N. Giniyatulin, and L. N. Khimchenko, J. Nucl. Mater. 463, 237 (2015). https://doi.org/10.1016/j.jnucmat.2014.11.129

    Article  ADS  Google Scholar 

  27. Yu. V. Martynenko, Plasma Phys. Rep. 43, 324 (2017). https://doi.org/10.1134/S1063780X17030084

    Article  ADS  Google Scholar 

  28. Yu. V. Martynenko and P. G. Moskovkin, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., No. 4, 17 (1991).

  29. Yu. V. Martynenko and P. G. Moskovkin, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., No. 2, 31 (1999).

Download references

Funding

This work was performed under contract no. 09-03/223/74 between the National Research Center “Kur-chatov Institute” and the National Research University “Moscow Power Engineering Institute” in the framework of contract with the Rosatom State Atomiс Energy Corporation ROSATOM no. 1/17519-D/230/4-19. The PLM experiments were supported by the Russian Science Foundation, grant no. 17-19-01469. The electron beam testing was supported by the Russian Foundation for Basic Research, grant No. 19-29-02020. The manufacture of automated s-ystems of scientific research (ASSR) on the PLM was s-upported by the Russian Federation Megagrant no. 14.Z50.31.0042. The analysis of materials was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. FSWF-2020-0023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Budaev.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorovich, S.D., Karpov, A.V., Budaev, V.P. et al. Investigation of the Protective Plasma-Facing Graphite In-Vessel Components of T-15MD Tokamak by Steady-State Plasma Loads in the PLM Device and by Powerful Electron Beams. Plasma Phys. Rep. 47, 345–354 (2021). https://doi.org/10.1134/S1063780X21030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21030065

Key words:

Navigation