Skip to main content
Log in

Plasma Railgun with Capillary–Porous Electrodes

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

A scheme of a spacecraft thruster based on pulsed plasma railgun with capillary–porous electrodes is proposed. Electrodes of this kind are renewable and do not degrade while their lifetime is limited by the stored amount of the filler metal of the capillary–porous electrode. Operating regimes in which capillary–porous electrodes are efficient are found. In these regimes, the proposed railgun construction can yield the thrust of several newtons and specific impulse of several tens of km/s. Li, Sn, and Ga can be used as filler metals of capillary–porous electrodes with porous mats made from molybdenum or tungsten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. P. Ageev and V. G. Ostrovskii, Izv. Ros. Akad. Nauk, Energ., No. 3, 83 (2007).

  2. S. N. Bathgate, M. M. M. Bilek, and D. R. McKenzie, Plasma Sci. Technol. 19, 083001 (2017).

  3. M. V. Koval’chuk, V. I. Il’gisonis, and V. M. Kulygin, Priroda, No. 12, 33 (2017).

    Google Scholar 

  4. V. A, Zhil’tsov and V. M. Kulygin, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 41 (3), 21 (2018).

    Google Scholar 

  5. V. I. Il’gisonis and Yu. V. Martynenko, Plasma Phys. Rep. 45, 57 (2019).

    Article  ADS  Google Scholar 

  6. L. A. Artsimovich, S. Yu. Luk’yanov, I. M. Podgornyi, and S. A. Chuvatin, Sov. Phys. JETP 6, 1 (1958).

    ADS  Google Scholar 

  7. V. G. Nosov, Izv. Tomsk. Politekh. Univ. 310 (2), 70 (2007).

    Google Scholar 

  8. P. L. Kalantarov and L. A. Tseitlin, Calculation of Inductances: Handbook (Energoatomizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  9. OPEN-ADAS. Atomic Data and Analysis Structure. http://open.adas.ac.uk/detail/adf11/plt42/plt42_ar.dat. Cited November 7, 2020.

  10. S. I. Anisimov, Ya. A. Imas, G. Romanov, and Yu. V. Khodyko, Action of High-Power Radiation on Metals (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  11. I. E. Lyublinskii, A. V. Vertkov, and V. V. Semenov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 38 (1), 7 (2015).

    Google Scholar 

  12. V. B. Petrov, B. I. Khripunov, V. V. Shapkin, and N. V. Antonov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., No. 4, 23 (2004).

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.N. Kazeev for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Martynenko or M. Yu. Nagel’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynenko, Y.V., Nagel’, M.Y. Plasma Railgun with Capillary–Porous Electrodes. Plasma Phys. Rep. 47, 362–368 (2021). https://doi.org/10.1134/S1063780X21040073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21040073

Key words:

Navigation