Skip to main content
Log in

Identification of tomato root growth regulatory genes and transcription factors through comparative transcriptomic profiling of different tissues

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Tomato is an economically important vegetable crop and a model for development and stress response studies. Although studied extensively for understanding fruit ripening and pathogen responses, its role as a model for root development remains less explored. In this study, an Illumina-based comparative differential transcriptomic analysis of tomato root with different aerial tissues was carried out to identify genes that are predominantly expressed during root growth. Sequential comparisons revealed ~ 15,000 commonly expressed genes and ~ 3000 genes of several classes that were mainly expressed or regulated in roots. These included 1069 transcription factors (TFs) of which 100 were differentially regulated. Prominent amongst these were members of families encoding Zn finger, MYB, ARM, bHLH, AP2/ERF, WRKY and NAC proteins. A large number of kinases, phosphatases and F-box proteins were also expressed in the root transcriptome. The major hormones regulating root growth were represented by the auxin, ethylene, JA, ABA and GA pathways with root-specific expression of certain components. Genes encoding carbon metabolism and photosynthetic components showed reduced expression while several protease inhibitors were amongst the most highly expressed. Overall, the study sheds light on genes governing root growth in tomato and provides a resource for manipulation of root growth for plant improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data access

The raw data analyzed for this study have been deposited in the NCBI Sequence Read Archive (SRA) database under BioProject accession ID: PRJNA589155 (https://www.ncbi.nlm.nih.gov/bioproject).

References

  • Antoni R, Gonzalez-Guzman M, Rodriguez L et al (2013) PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161:931–941 (23370718)

    Article  CAS  PubMed  Google Scholar 

  • Barry CS, McQuinn RP, Thompson AJ et al (2005) Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. Plant Physiol 138:267–275 (15834010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhardt C, Lee MM, Gonzalez A et al (2003) The bHLH genes GLABRA3 (GL3) andENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130:6431–6439 (14627722)

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY et al (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960 (14671301)

    Article  CAS  PubMed  Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103 (17246486)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady SM, Orlando DA, Lee JY et al (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806 (17975066)

    Article  CAS  PubMed  Google Scholar 

  • Campos ML, Yoshida Y, Major IT et al (2016) Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat Commun 7:1–10 (27573094)

    Article  CAS  Google Scholar 

  • Castilhos G, Lazzarotto F, Spagnolo-Fonini L et al (2014) Possible roles of basic helix-loop-helix transcription factors in adaptation to drought. Plant Sci 223:1–7 (24767109)

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Lv Y, Zhao T et al (2013) Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS ONE 8:e80816 (24260487)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chialva M, Salvioli di Fossalunga A, Daghino S et al (2018) Native soils with their microbiotas elicit a state of alert in tomato plants. New Phytol 220:1296–1308 (29424928)

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905 (14716561)

    Article  CAS  PubMed  Google Scholar 

  • De Smet I, Vanneste S, Inzé D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887 (16724258)

    Article  CAS  PubMed  Google Scholar 

  • De Smet I, Vassileva V, De Rybel B et al (2008) Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 322(5901):594–597 (18948541)

    Article  PubMed  CAS  Google Scholar 

  • De Smet I, White PJ, Bengough AG et al (2012) Analyzing lateral root development: how to move forward. Plant Cell 24:15–20 (22227890)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding ZJ, Yan JY, Li CX et al (2015) Transcription factor WRKY 46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. Plant J 84:56–69 (26252246)

    Article  CAS  PubMed  Google Scholar 

  • Drisch RC, Stahl Y (2015) Function and regulation of transcription factors involved in root apical meristem and stem cell maintenance. Front Plant Sci 6:505 (26217359)

    Article  PubMed  PubMed Central  Google Scholar 

  • Du H, Wang Y, Yang J, Yang W (2015) Comparative transcriptome analysis of resistant and susceptible tomato lines in response to infection by Xanthomonas perforans race T3. Front Plant Sci 6:1173 (26734053)

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubos C, Stracke R, Grotewold E et al (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581 (20674465)

    Article  CAS  PubMed  Google Scholar 

  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S et al (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci 105:8790–8794 (18559858)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dun X, Tao Z, Wang J et al (2016) Comparative transcriptome analysis of primary roots of Brassica napus seedlings with extremely different primary root lengths using RNA sequencing. Front Plant Sci 7:1238 (27594860)

    Article  PubMed  PubMed Central  Google Scholar 

  • Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131 (19102748)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168 (11862947)

    Article  CAS  PubMed  Google Scholar 

  • Gibbs DJ, Voß U, Harding SA et al (2014) AtMYB 93 is a novel negative regulator of lateral root development in Arabidopsis. New Phytol 203:1194–1207 (24902892)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh T, Joi S, Mimura T, Fukaki H (2012) The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. Development 139:883–893 (22278921)

    Article  CAS  PubMed  Google Scholar 

  • Grunewald W, De Smet I, Lewis DR et al (2012) Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci 109:1554–1559 (22307611)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460 (17900969)

    Article  CAS  PubMed  Google Scholar 

  • Gunapati S, Naresh R, Ranjan S et al (2016) Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Sci Rep 6:24978 (27113714)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Shi G, Guo X et al (2015) Transcriptome analysis reveals that distinct metabolic pathways operate in salt-tolerant and salt-sensitive upland cotton varieties subjected to salinity stress. Plant Sci 238:33–45 (26259172)

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Shi X, Lindquist IE et al (2013) Transcriptome profiling of cytokinin and auxin regulation in tomato root. J Exp Bot 64:695–704 (23307920)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He XJ, Mu RL, Cao WH et al (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916 (16359384)

    Article  CAS  PubMed  Google Scholar 

  • Heyman J, Cools T, Vandenbussche F et al (2013) ERF115 controls root quiescent center cell division and stem cell replenishment. Science 342:860–863 (24158907)

    Article  CAS  PubMed  Google Scholar 

  • Hill CB, Cassin A, Keeble-Gagnère G et al (2016) De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure. Sci Rep 6:31558 (27527578)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular. California agricultural experiment station 347(2nd edit)

  • Irshad M, Canut H, Borderies G et al (2008) A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers. BMC Plant Biol 8:94 (18796151)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jansen L, Hollunder J, Roberts I et al (2013) Comparative transcriptomics as a tool for the identification of root branching genes in maize. Plant Biotechnol J 11:1092–1102 (23941360)

    Article  CAS  PubMed  Google Scholar 

  • Katayama H, Iwamoto K, Kariya Y et al (2015) A negative feedback loop controlling bHLH complexes is involved in vascular cell division and differentiation in the root apical meristem. Curr Biol 25:3144–3150 (26616019)

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Zhu Y, Gao C et al (2013) Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis. Plant Cell Physiol 54:609–621 (23396598)

    Article  CAS  PubMed  Google Scholar 

  • Kwak SH, Schiefelbein J (2007) The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis. Dev Biol 302:118–131 (17027738)

    Article  CAS  PubMed  Google Scholar 

  • Laurie S, Halford NG (2001) The role of protein kinases in the regulation of plant growth and development. Plant Growth Regul 34:253–265

    Article  CAS  Google Scholar 

  • Lee HW, Kim NY, Lee DJ, Kim J (2009) LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiol 151:1377–1389 (19717544)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HW, Kim MJ, Kim NY et al (2013) LBD18 acts as a transcriptional activator that directly binds to the EXPANSIN14 promoter in promoting lateral root emergence of Arabidopsis. Plant J 73:212–224 (22974309)

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhu B, Xu W et al (2007) LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep 26:1999–2008 (17639404)

    Article  CAS  PubMed  Google Scholar 

  • Li A, Chen G, Yu X et al (2019) The tomato MADS-box gene SlMBP9 negatively regulates lateral root formation and apical dominance by reducing auxin biosynthesis and transport. Plant Cell Rep 38:951–963 (31062133)

    Article  CAS  PubMed  Google Scholar 

  • Liu YB, Lu SM, Zhang JF et al (2007) A xyloglucan endotransglucosylase/hydrolase involves in growth of primary root and alters the deposition of cellulose in Arabidopsis. Planta 226:1547–1560 (17674032)

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408 (11846609)

    Article  CAS  PubMed  Google Scholar 

  • Lo SF, Yang SY, Chen KT et al (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618 (18952778)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Bucio J, Cruz-Ramırez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287 (12753979)

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950 (15208388)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan S (2003) Protein phosphatases in plants. Annu Rev Plant Biol 54:63–92 (14502985)

    Article  CAS  PubMed  Google Scholar 

  • Mao JL, Miao ZQ, Wang Z et al (2016) Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genet 12:e1005760 (26745809)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maris A, Suslov D, Fry SC et al (2009) Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension. J Exp Bot 60:3959–3972 (19635745)

    Article  CAS  PubMed  Google Scholar 

  • Markakis MN, Boron AK, Van Loock B et al (2013) Characterization of a small auxin-up RNA (SAUR)-like gene involved in Arabidopsis thaliana development. PLoS ONE 8:e82596 (24312429)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendu V, Stork J, Harris D, DeBolt S (2011) Cellulose synthesis in two secondary cell wall processes in a single cell type. Plant Signal Behav 6:1638–1643 (22057330)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moumeni A, Satoh K, Kondoh H et al (2011) Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC Plant Biol 11:174 (22136218)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu RL, Cao YR, Liu YF et al (2009) An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Res 19:1291–1304 (19581938)

    Article  CAS  PubMed  Google Scholar 

  • Negi S, Santisree P, Kharshiing EV, Sharma R (2010) Inhibition of the ubiquitin—proteasome pathway alters cellular levels of nitric oxide in tomato seedlings. Mol Plant 3:854–869 (20603380)

    Article  CAS  PubMed  Google Scholar 

  • Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595–614 (18452506)

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248 (24058359)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohashi-Ito K, Matsukawa M, Fukuda H (2013) An atypical bHLH transcription factor regulates early xylem development downstream of auxin. Plant Cell Physiol 54:398–405 (23359424)

    Article  CAS  PubMed  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K et al (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463 (15659631)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okushima Y, Fukaki H, Onoda M et al (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130 (17259263)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou Y, Lu X, Zi Q et al (2016) RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res 26:686–698 (27229312)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmanabhan C, Ma Q, Shekasteband R et al (2019) Comprehensive transcriptome analysis and functional characterization of PR-5 for its involvement in tomato Sw-7 resistance to tomato spotted wilt tospovirus. Sci Rep 9:1–7 (31114006)

    Article  CAS  Google Scholar 

  • Paponov IA, Paponov M, Teale W et al (2008) Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant 1:321–337 (19825543)

    Article  CAS  PubMed  Google Scholar 

  • Parizot B, Laplaze L, Ricaud L et al (2008) Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol 146:140–148 (17993548)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattison RJ, Csukasi F, Zheng Y et al (2015) Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development. Plant Physiol 168:1684–1701 (26099271)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quach TN, Tran LS, Valliyodan B et al (2014) Functional analysis of water stress-responsive soybean GmNAC003 and GmNAC004 transcription factors in lateral root development in Arabidopsis. PLoS ONE 9:e84886 (24465446)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramaiah M, Jain A, Raghothama KG (2014) Ethylene Response Factor070 regulates root development and phosphate starvation-mediated responses. Plant Physiol 164:1484–1498 (24394776)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna P, Ruiz Duarte P, Rance GA et al (2019) EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proc Natl Acad Sci 116:8597–8602 (30944225)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashotte AM, DeLong A, Muday GK (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell 13:1683–1697 (11449059)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riechmann JL, Heard J, Martin G et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110 (11118137)

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues-Pousada RA, De Rycke R, Dedonder A et al (1993) The Arabidopsis 1-aminocyclopropane-1-carboxylate synthase gene 1 is expressed during early development. Plant Cell 5:897–911 (12271088)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogg LE, Lasswell J, Bartel B (2001) A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13:465–480 (11251090)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H et al (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472 (10589675)

    Article  CAS  PubMed  Google Scholar 

  • Santisree P, Nongmaithem S, Vasuki H et al (2011) Tomato root penetration in soil requires a coaction between ethylene and auxin signaling. Plant Physiol 156:1424–1438 (21571667)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Tabata S, Hirakawa H et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641 (22660326)

    Article  CAS  Google Scholar 

  • Shin R, Burch AY, Huppert KA et al (2007) The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19:2440–2453 (17675404)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki Y, Nicolas P, Fernandez-Pozo N et al (2018) High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nat Commun 9(1):1–3 (29371663, 25)

    Article  CAS  Google Scholar 

  • Shukla V, Lombardi L, Iacopino S et al (2019) Endogenous hypoxia in lateral root primordia controls root architecture by antagonizing auxin signaling in Arabidopsis. Mol Plant 12:538–551 (30641154)

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kumar P, Gautam V et al (2016) Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses. Sci Rep 6:39266 (28000793)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Debnath P, Roohi et al (2020) Expression of the tomato WRKY gene, SlWRKY23, alters root sensitivity to ethylene, auxin and JA and affects aerial architecture in transgenic Arabidopsis. Physiol Mol Biol Plants 26(6):1187–1199 (32549682)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci 89:6837–6840 (11607311)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelpflug SC, Sekhon RS, Vaillancourt B et al (2016) An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome-Us 9(1):1–16. https://doi.org/10.3835/plantgenome2015.04.002 (27898762)

    Article  CAS  Google Scholar 

  • Tan G, Liu K, Kang J et al (2015) Transcriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencing. Front Plant Sci 6:428 (26106404)

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang N, Deng W, Hu G et al (2015) Transcriptome profiling reveals the regulatory mechanism underlying pollination dependent and parthenocarpic fruit set mainly mediated by auxin and gibberellin. PLoS ONE 10(4):e0125355 (25909657)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarazona S, Furió-Tarí P, Turrà D et al (2015) Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res 43:e140 (26184878)

    PubMed  PubMed Central  Google Scholar 

  • Tian H, Guo H, Dai X et al (2015) An ABA down-regulated bHLH transcription repressor gene, bHLH129 regulates root elongation and ABA response when overexpressed in Arabidopsis. Sci Rep 5:17587 (26625868)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tieman D, Zhu G, Resende MF Jr et al (2017) A chemical genetic roadmap to improved tomato flavor. Science 355:391–394 (28126817)

    Article  CAS  PubMed  Google Scholar 

  • Toal TW, Ron M, Gibson D et al (2018) Regulation of root angle and gravitropism. G3 (bethesda) 8:3841–3855 (30322904)

    Article  CAS  Google Scholar 

  • Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578 (22383036)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubeda-Tomás S, Federici F, Casimiro I et al (2009) Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr Biol 19:1194–1199 (19576770)

    Article  PubMed  CAS  Google Scholar 

  • Uehara T, Okushima Y, Mimura T et al (2008) Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana. Plant Cell Physiol 49:1025–1038 (18505759)

    Article  CAS  PubMed  Google Scholar 

  • Villalobos LI, Lee S, De Oliveira C et al (2012) A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8:477–485 (22466420)

    Article  PubMed Central  CAS  Google Scholar 

  • Vissenberg K, Oyama M, Osato Y et al (2005) Differential expression of AtXTH17, AtXTH18, AtXTH19 and AtXTH20 genes in Arabidopsis roots. Physiological roles in specification in cell wall construction. Plant Cell Physiol 46:192–200 (15659443)

    Article  CAS  PubMed  Google Scholar 

  • Wilmoth JC, Wang S, Tiwari SB et al (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43:118–130 (15960621)

    Article  CAS  PubMed  Google Scholar 

  • Wolters H, Jürgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317 (19360022)

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036 (11114891)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing L, Zhao Y, Gao J et al (2016) The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth. Sci Rep 6:27177 (27256015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Pan X, Deng Y et al (2016) AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency. Sci Rep 6:24778 (27101793)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Liu X, Wang Q et al (2014) OsRPK1, a novel leucine-rich repeat receptor-like kinase, negatively regulates polar auxin transport and root development in rice. Biochim Biophys Acta 1840:1676–1685 (24412327)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by Council of Scientific and Industrial Research (CSIR), Delhi, India under the network project BSC0204 to VAS and APS. VK is grateful to CSIR, India for Senior Research Fellowship. AM is grateful to DST, Government of India for Senior Research Fellowship. DS is grateful to CSIR, India for project fellowship. We also thank Ram Awadh for taking care of tomato plants in glass house.

Funding

This study was funded by CSIR, India under the projects BSC0204.

Author information

Authors and Affiliations

Authors

Contributions

VAS and APS conceived the idea and designed the experiments. VK, AM and DS performed the experiments and data analysis. MHA, SS, VK and VAS carried out bioinformatic analysis. VK, MHA, APS and VAS prepared the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Vidhu A. Sane.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

NBRI MS Number is CSIR-NBRI_MS/2020/06/04.

Integral MS Number is IU/R&D/2020-MCN00817.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Singh, D., Majee, A. et al. Identification of tomato root growth regulatory genes and transcription factors through comparative transcriptomic profiling of different tissues. Physiol Mol Biol Plants 27, 1173–1189 (2021). https://doi.org/10.1007/s12298-021-01015-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-01015-0

Keywords

Navigation