Skip to main content
Log in

Evaluation of solidification cracking of Ni-based alloy dissimilar welds based on Trans-Varestraint test

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

This study aims to evaluate the weldability of dissimilar welds with the Inconel 625 and the Hastelloy C-276 nickel-based alloys deposited on ASTM A36 and AISI 1045 carbon steel plates. The welds were carried out by the GMAW process and evaluated by the Trans-Varestraint test. The test results were statistically evaluated, and Fusion Zone solidification processes were simulated in JMatPro software using several dilution levels. The analysis of variance (ANOVA) test results showed that the two different base metals did not affect the weldability of Inconel 625. However, the Hastelloy C-276 alloy showed a significant drop in weldability with the AISI 1045 steel compared to the ASTM A36. The results of the Hastelloy C-276 as the filler metal and the AISI 1045 steel as the base metal showed greater susceptibility to solidification cracking than all the other pairs tested, according to the Trans-Varestraint test. Moreover, the ANOVA test results indicated that the different heat input levels did not influence the sets’ weldability; this was probably because there was only a tiny variation in the dilution levels. The solidification process simulation indicates that higher dilution levels promote the precipitation of a larger secondary phase fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maltin CA, Galloway AM, Mweemba M (2014) Microstructural evolution of Inconel 625 and Inconel 686CPT weld metal for clad carbon steel linepipe joints: a comparator study. Metall Mater Trans A 45(8):3519–3532. https://doi.org/10.1007/s11661-014-2308-z

    Article  CAS  Google Scholar 

  2. Kim JS, Lee HW (2016) Effect of welding heat input on microstructure and texture of Inconel 625 weld overlay studied using the electron backscatter diffraction method. Metall Mater Trans A 47(12):6109–6120. https://doi.org/10.1007/s11661-016-3754-6

    Article  CAS  Google Scholar 

  3. Hosseini HS, Shamanian M, Kermanpur A (2011) Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds. Mater Charact 62(4):425–431. https://doi.org/10.1016/j.matchar.2011.02.003

    Article  CAS  Google Scholar 

  4. Kourdani A, Derakhshandeh-Haghighi R (2018) Evaluating the properties of dissimilar metal welding between Inconel 625 and 316L stainless steel by applying different welding methods and consumables. Metall Mater Trans A 49(4):1231–1243. https://doi.org/10.1007/s11661-018-4469-7

    Article  CAS  Google Scholar 

  5. Ranjbar K, Dehmolaei R, Amra M, Keivanrad I (2018) Microstructure and properties of a dissimilar weld between alloy 617 and A387 steel using different filler metals. Welding in the World 62(6):1121–1136. https://doi.org/10.1007/s40194-018-0610-x

    Article  CAS  Google Scholar 

  6. Silva CC, Afonso CR, Ramirez AJ, Motta MF, Miranda HC, Farias JP (2016) Assessment of microstructure of alloy Inconel 686 dissimilar weld claddings. J Alloys Compd 684:628–642. https://doi.org/10.1016/j.jallcom.2016.05.231

    Article  CAS  Google Scholar 

  7. Miná ÉM, Silva YCD, Dille J, Silva CC (2016) Effect of dilution on the microstructure of AWS ER NiCrMo-14 weld overlay deposited by TIG cold wire feed process. Soldagem & Inspeção 21(3):317–329. https://doi.org/10.1590/0104-9224/SI2103.07

    Article  Google Scholar 

  8. Silva CC, Afonso CRM, Ramirez AJ, Motta MF, Miranda HCD, Farias JP (2012) Metallurgical aspects of dissimilar weld overlays of inconel 625 nickel based superalloys. Soldagem & Inspeção 17(3):251–263. https://doi.org/10.1590/S0104-92242012000300009

    Article  CAS  Google Scholar 

  9. Rozmus-Górnikowska MAGDALENA, Cieniek Ł, Blicharski M, Kusiński J (2014) Microstructure and microsegregation of an Inconel 625 weld overlay produced on steel pipes by the cold metal transfer technique. Arch Metall Mater 59. https://doi.org/10.2478/amm-2014-0185

  10. Silva CC, De Albuquerque VHC, Miná EM, Moura EP, Tavares JMR (2018) Mechanical properties and microstructural characterization of aged nickel-based alloy 625 weld metal. Metall Mater Trans A 49(5):1653–1673. https://doi.org/10.1007/s11661-018-4526-2

    Article  CAS  Google Scholar 

  11. CC S (2013) Weld overlay. In: Wang, Q. Jane, Chung, Yip-Wah. (Org.). Encyclopedia of tribology 1edNew York: Springer US 1:4094–4101

    Google Scholar 

  12. Jeshvaghani RA, Harati E, Shamanian M (2011) Effects of surface alloying on microstructure and wear behavior of ductile iron surface-modified with a nickel-based alloy using shielded metal arc welding. Mater Des 32(3):1531–1536. https://doi.org/10.1016/j.matdes.2010.10.006

    Article  CAS  Google Scholar 

  13. Amudha A, Shashikala HD, Nagaraja HS (2019) Corrosion protection of low-cost carbon steel with SS-309Mo and Inconel-625 bimetallic weld overlay. Materials Research Express 6(4):046523. https://doi.org/10.1088/2053-1591/aafba6

    Article  CAS  Google Scholar 

  14. Miná ÉM, Da Silva YC, Dille J, Silva CC (2016) The effect of dilution on microsegregation in AWS ER NiCrMo-14 alloy welding claddings. Metall Mater Trans A 47(12):6138–6147. https://doi.org/10.1007/s11661-016-3786-y

    Article  CAS  Google Scholar 

  15. Longlong G, Hualin Z, Shaohu L, Yueqin L, Xiaodong X, Chunyu F (2016) Formation quality optimization and corrosion performance of Inconel 625 weld overlay using hot wire pulsed TIG. Rare Metal Mater Eng 45(9):2219–2226. https://doi.org/10.1016/S1875-5372(17)30006-1

    Article  Google Scholar 

  16. Silva CC, De Miranda HC, Motta MF, Farias JP, Afonso CRM, Ramirez AJ (2013) New insight on the solidification path of an alloy 625 weld overlay. Journal of Materials research and Technology 2(3):228–237. https://doi.org/10.1016/j.jmrt.2013.02.008

    Article  CAS  Google Scholar 

  17. Alexandrov BT, Lippold JC, Sowards JW, Hope AT, Saltzmann DR (2013) Fusion boundary microstructure evolution associated with embrittlement of Ni–base alloy overlays applied to carbon steel. Welding in the World 57(1):39–53. https://doi.org/10.1007/s40194-012-0007-1

    Article  CAS  Google Scholar 

  18. Frei J, Alexandrov BT, Rethmeier M (2018) Low heat input gas metal arc welding for dissimilar metal weld overlays part II: the transition zone. Welding in the World 62(2):317–324. https://doi.org/10.1007/s40194-017-0539-5

    Article  CAS  Google Scholar 

  19. Rajkumar V, Arjunan TV, Kannan AR (2019) Metallurgical and mechanical investigations of Inconel 625 overlay welds produced by GMAW-hardfacing process on AISI 347 pipes. Materials Research Express 6(7):076534. https://doi.org/10.1088/2053-1591/ab11f0

    Article  CAS  Google Scholar 

  20. Solecka M, Kopia A, Radziszewska A, Rutkowski B (2018) Microstructure, microsegregation and nanohardness of CMT clad layers of Ni-base alloy on 16Mo3 steel. J Alloys Compd 751:86–95. https://doi.org/10.1016/j.jallcom.2018.04.102

    Article  CAS  Google Scholar 

  21. Rajkumar V, Arjunan TV, Kannan AR (2020) Investigations on hardfacing and wear characteristics of nickel-based Inconel 625 overlaid welds over AISI 347 pipe. J Braz Soc Mech Sci Eng 42(1):12. https://doi.org/10.1007/s40430-019-2092-1

    Article  CAS  Google Scholar 

  22. Farias FWC, da Cruz Payão Filho J, da Silva Júnior DA, de Moura RN, Rios MCG (2019) Microstructural characterization of Ni-based superalloy 625 clad welded on a 9% Ni steel pipe by plasma powder transferred arc. Surf Coat Technol 374:1024–1037. https://doi.org/10.1016/j.surfcoat.2019.06.084

    Article  CAS  Google Scholar 

  23. Antoszczyszyn TJ, Paes RMG, Oliveira ASCMD, Scheid A (2014) Impact of dilution on the microstructure and properties of Ni-based 625 alloy coatings. Soldagem & Inspeção 19(2):134–144. https://doi.org/10.1590/0104-9224/SI1902.05

    Article  Google Scholar 

  24. Diaz VV, Dutra JC, D’Oliveira ASCM (2012) Hardfacing by plasma transfer arc process. Weld Int 26(2):87–95. https://doi.org/10.1590/S0104-92242010000100006

    Article  CAS  Google Scholar 

  25. Chattopadhyay P, van der Mee V, Zhang Z (2019) Hybrid electroslag cladding (H-ESC): an innovation in high speed electroslag strip cladding. Welding in the World 63(3):663–672. https://doi.org/10.1007/s40194-018-00692-y

    Article  CAS  Google Scholar 

  26. Sandes SS, Alvarães CP, Mendes MC, Araújo LS, Souza LFGD, Jorge JCF (2016) Evaluation of the 625 nickel alloy weld overlays deposited by electroslag process. Soldagem & Inspeção 21(4):417–427. https://doi.org/10.1590/0104-9224/si2104.03

    Article  Google Scholar 

  27. Alvarães CP, Sandes SS, Jorge JCF, de Souza LFG, Araújo LS, Mendes MC, Dille J (2020) Microstructural characterization of Inconel 625 nickel-based alloy weld cladding obtained by electroslag welding process. J Mater Eng Perform 29:3004–3015. https://doi.org/10.1007/s11665-020-04861-3

    Article  CAS  Google Scholar 

  28. Jorge JC, Meira OG, Madalena FCA, de Souza LFG, Araujo LS, Mendes MC (2017) Evaluation of the AISI 904L alloy weld overlays obtained by GMAW and electro-slag welding processes. J Mater Eng Perform 26(5):2204–2212. https://doi.org/10.1007/s11665-017-2631-9

    Article  CAS  Google Scholar 

  29. Falcón JCP, Echeverría A, Afonso CR, Carrullo JCZ, Borrás VA (2019) Microstructure assessment at high temperature in NiCoCrAlY overlay coating obtained by laser metal deposition. Journal of Materials Research and Technology 8(2):1761–1772. https://doi.org/10.1016/j.jmrt.2018.12.006

    Article  CAS  Google Scholar 

  30. Xu X, Mi G, Chen L, Xiong L, Jiang P, Shao X, Wang C (2017) Research on microstructures and properties of Inconel 625 coatings obtained by laser cladding with wire. J Alloys Compd 715:362–373. https://doi.org/10.1016/j.jallcom.2017.04.252

    Article  CAS  Google Scholar 

  31. Abioye TE, McCartney DG, Clare AT (2015) Laser cladding of Inconel 625 wire for corrosion protection. J Mater Process Technol 217:232–240. https://doi.org/10.1016/j.jmatprotec.2014.10.024

    Article  CAS  Google Scholar 

  32. Tuominen J, Kaubisch M, Thieme S, Näkki J, Nowotny S, Vuoristo P (2019) Laser strip cladding for large area metal deposition. Additive Manufacturing 27:208–216. https://doi.org/10.1016/j.addma.2019.01.008

    Article  CAS  Google Scholar 

  33. Hebbale AM, Srinath MS (2016) Microstructural investigation of Ni based cladding developed on austenitic SS-304 through microwave irradiation. Journal of materials research and technology 5(4):293–301. https://doi.org/10.1016/j.jmrt.2016.01.002

    Article  CAS  Google Scholar 

  34. DuPont JN, Babu S, Liu S (2013) Welding of materials for energy applications. Metall Mater Trans A 44(7):3385–3410. https://doi.org/10.1007/s11661-013-1643-9

    Article  CAS  Google Scholar 

  35. Iannuzzi M, Barnoush A, Johnsen R (2017) Materials and corrosion trends in offshore and subsea oil and gas production. npj. Materials Degradation 1(1):1–11. https://doi.org/10.1038/s41529-017-0003-4

    Article  Google Scholar 

  36. Shamanian M, Kangazian J, Derakhshi MA, Szpunar JA (2019) Microstructure and mechanical properties of Inconel 617/AISI 310 electron beam welds. Metall Mater Trans A 50(7):3164–3173. https://doi.org/10.1007/s11661-019-05226-9

    Article  CAS  Google Scholar 

  37. Araújo AD, Bastian FL, Castrodeza EM (2016) CTOD-R curves of the metal-clad interface of API X52 pipes cladded with an Inconel 625 alloy by welding overlay. Fatigue Fract Eng Mater Struct 39(12):1477–1487. https://doi.org/10.1111/ffe.12462

    Article  CAS  Google Scholar 

  38. Silva CC, Miranda EC, Motta MF, Miranda HC, Farias JP (2012) Dilution control of weld overlay superalloys using taguchi method. In: 31st International Conference on Ocean, Offshore and Artic Engineering - OMAE2012, 2012, Rio de Janeiro. Proceedings of 31st International Conference on Ocean, Offshore and Artic Engineering - OMAE2012. New York: American Society of Mechanical Engineers ASME

  39. CC Silva, CRM Afonso, AJ Ramirez, ÉM Miná, WM Aguiar, MF Motta, HC Miranda, JP Farias (n.d.) Microstructure and microchemistry of Hastelloy C276 dissimilar weld claddings. Metall and Mat Trans A [Submitted for publication].

  40. Mannan MA, Golihue R, Kiser S, McCoy SA, Phillipp J (2016) A new nickel alloy filler metal designed for welding high strength ID-clad steels. In EUROCORR 50697:11–15

    Google Scholar 

  41. Silva RS, Miná EM, Dalpiaz G, Reppold RM, Paes MTP, Motta MF, Silva CC, Miranda HC (2020) Assessment of mechanical and metallurgical features of Inconel 680 weld metal. In: S. Tin et al. (eds.), Superalloys. The Minerals, Metals & Materials Series. https://doi.org/10.1007/978-3-030-51834-9_42

  42. ÉM Miná, G.M. Ferreira, R.S. Silva, R.M. Reppold, G. Dalpiaz, M.T. Piza Paes, M.F. Motta, H.C. Miranda, C.C. Silva (n.d.) Dissimilar girth welding of nickel-based alloy cladded pipelines: a new approach combining alloy 625 and low alloy steel as the filler metals for overmatch requirements. J. Mater. Proc. Tech. [Submitted for publication]

  43. Lippold JC, Kiser SD, DuPont JN (2011) Welding metallurgy and weldability of nickel-base alloys. John Wiley & Sons

  44. Wheeling RA, Lippold JC (2020) Weldability testing to understand composition effects on eutectic backfilling in Ni-30Cr alloys. Welding in the World 64(1):83–93. https://doi.org/10.1007/s40194-019-00806-0

    Article  CAS  Google Scholar 

  45. Manikandan M, Arivazhagan N, Rao MN, Reddy GM (2015) Improvement of microstructure and mechanical behavior of gas tungsten arc weldments of alloy C-276 by current pulsing. Acta Metallurgica Sinica (English Letters) 28(2):208–215. https://doi.org/10.1007/s40195-014-0186-4

    Article  CAS  Google Scholar 

  46. Goodwin GM (1987) Development of a new hot-cracking test–the sigmajig. Weld J 66(2):33s–38s

    Google Scholar 

  47. NIPPES, Ernest F.; SAVAGE, Warren F. (1949) Development of specimen simulating weld heat-affected zones. Weld J 28(11):534–546

    Google Scholar 

  48. Nakata K, Matsuda F (1995) Evaluations of ductility characteristics and cracking susceptibility of Al alloys during welding (materials, metallurgy & weldability). Transactions of JWRI, 24(1), 83-94. [53] KOU, Sindo. Solidification and liquation cracking issues in welding. Jom 55(6):37–42 2003

    Google Scholar 

  49. Kou S (2003) Library. In: Welding metallurgy. USA, New Jersey, pp 431–446. https://doi.org/10.1557/mrs2003.197

    Chapter  Google Scholar 

  50. Savage, W. F. and Lundin, C. D. “The Varestraint Test,” Welding Journal. October 1965 433-s to 442-s.

  51. Savage, W. F. and Lundin, C. D., “Application of the Varestraint technique to the study of weldability,” Welding Journal, November 1966 497-s to 503-s.

  52. Senda T, Matsuda F, Takano G, Watanabe K, Kobayashi T, Matsuzaka T (1971) Fundamental investigations on solidification crack susceptibility for weld metals with Trans-Varestraint test. Trans Jpn Weld Soc 2(2):1–22

    Google Scholar 

  53. Arata Y, Matsuda F (1976) Solidification crack susceptibility of aluminum alloy weld metals (report I)—characteristics of ductility curves during solidification by means of the TransVarestraint test. Trans JWRI 5(21):53–67

    Google Scholar 

  54. Matsuda Y, Arata SK et al (1977) Solidification crack susceptibility in weld metals offully austenitic stainless steels (Report III)—effect of strain rate on cracking threshold in weld metal during solidification. Trans JWRI 6(21):197–207

    Google Scholar 

  55. Cieslak MJ, Headley TJ, Romig AD (1986) The welding metallurgy of HASTELLOY alloys C-4, C-22, and C-276. Metall Trans A 17(11):2035–2047. https://doi.org/10.1007/BF02645001

    Article  Google Scholar 

  56. Rowe MD, Crook P, Hoback GL (2003) Weldability of a corrosion-resistant Ni-Cr-Mo-Cu alloy. WELDING JOURNAL-NEW YORK 82(11):313–31S

    Google Scholar 

  57. Santillana B, Boom R, Eskin D, Mizukami H, Hanao M, Kawamoto M (2012) High-temperature mechanical behavior and fracture analysis of a low-carbon steel related to cracking. Metall Mater Trans A 43(13):5048–5057. https://doi.org/10.1007/s11661-012-1331-1

    Article  CAS  Google Scholar 

  58. Lippold J, Sowards J, Murray G, Alexandrov B, Ramirez A (2008) Weld solidification cracking in solid-solution strengthened Ni-base filler metals. In: Böllinghaus T, Herold H, Cross CE, Lippold JC (eds) Hot cracking phenomena in welds II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78628-3_9

    Chapter  Google Scholar 

  59. JN D, BANOVIC SW, MARDER AR (2003) Microstructural evolution and weldability of dissimilar welds between a super austenitic stainless steel and nickel-based alloys. Weld J 82(6):125

    Google Scholar 

  60. Dupont JN (1996) Solidification of an alloy 625 weld overlay. Metall Mater Trans A 27(11):3612–3620

    Article  Google Scholar 

  61. MJ CIESLAK et al (1988) A melting and solidification study of alloy 625. Metall Trans A 19(9):2319–2331

    Article  Google Scholar 

  62. Dimitrios S et al (2019) Getting the strain under control: Trans-Varestraint tests for hot cracking susceptibility. Metall Mater Trans A 50(4):1748–1762

    Article  Google Scholar 

  63. Jrnn D et al (1998) Solidification of Nb-bearing superalloys: Part I. Reaction sequences. Metall Mater Trans A 29(11):2785–2796

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Welding Research Technology Laboratory team of the Federal University of Ceará (UFC), especially to the Prof. Willys Machado Aguiar; The Analytical Center of the UFC, project CT-INFRA/MCTI-SISNANO/PRÓ-EQUIPAMENTOS CAPES, for allowing the use of its microscopy facilities; and, finally, to Petróleo Brasileiro S/A (Petrobras) for support.

Funding

The authors would like to thank the agencies FUNCAP, CNPq, and CAPES that provided financial support for this study through undergraduate and Master’s scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleiton Carvalho Silva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission IX - Behaviour of Metals Subjected to Welding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, G.E., Miná, É.M., Pequeno, D.A.C. et al. Evaluation of solidification cracking of Ni-based alloy dissimilar welds based on Trans-Varestraint test. Weld World 65, 1969–1982 (2021). https://doi.org/10.1007/s40194-021-01147-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01147-7

Keywords

Navigation