Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Estimation of the configurational heat capacity of polyisobutylene, isobutane and 2,2,4-isomethylpentane above the glass transition temperature

Abstract

In this study, the absolute values for the configurational heat capacity of polyisobutylene (PIB), isobutane (which corresponds to the monomer of PIB), and 2,2,4-isomethylpentane (which corresponds to the dimer of PIB) were estimated based on the assumption that skeletal and group vibration modes do not change before and after the glass transition. The configurational heat capacities evaluated for these three substances decreased with increasing temperature. This temperature dependence of the configurational heat capacity is the same as that previously observed for molecular glass, which has a simple molecular structure. Additionally, the configurational heat capacities for the three substances were found to be different at the same temperature. This suggests that interactions with the surroundings that determine the configuration and orientation of the molecules differ as to the molecular weight changes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM. The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Dat. 1982;11:1–392.

    Google Scholar 

  2. Gopal ESR. Specific heats at low temperatures. London: Springer; 2012.

  3. Wunderlich B. Thermal analysis of polymeric materials. Heidelberg: Springer; 2005.

  4. Glassy, amorphous and nano-crystalline materials: thermal physics, analysis, structure and properties. In: Šesták J, Mareš JJ, Hubík P, editors. Hot topics in thermal analysis and calorimetry. vol. 8. Springer Science & Business Media; 2010.

  5. Gibson GE, Giauque WF. The third law of thermodynamics. Evidence from the specific heats of glycerol that the entropy of a glass exceeds that of a crystal at the absolute zero. J Am Chem Soc. 1923;45:93–104.

    Article  CAS  Google Scholar 

  6. Haida O, Matsuo T, Suga H, Seki S. Calorimetric study of the glassy state X. Enthalpy relaxation at the glass-transition temperature of hexagonal ice. J Chem Thermodyn. 1974;6:815–25.

    Article  CAS  Google Scholar 

  7. Tajima Y, Matsuo T, Suga H. Calorimetric study of phase transition in hexagonal ice doped with alkali hydroxides. J Phys Chem Solids. 1984;45:1135–44.

    Article  CAS  Google Scholar 

  8. Kume Y, Muraoka H, Yamamuro O, Matsuo T. Deuteration-induced phase transition in ammonium hexachloroplumbate. J Chem Phys 1988;108:4090–7.

    Article  Google Scholar 

  9. Miyazaki Y, Wang Q, Sato A, Saito K, Yamamoto M, Kitagawa H, et al. Heat capacity of the halogen-bridged mixed-valence complex Pt2(dta)4I(dta = CH3CS2). J Phys Chem B. 2002;106:197–202.

    Article  CAS  Google Scholar 

  10. Yamamura Y, Nakajima N, Tsuji T, Koyano M, Iwasa Y, Katayama S, et al. Low temperature heat capacities and Raman spectra of negative thermal expansion compounds ZrW2O8 and HfW2O8. Phys Rev B. 2002;66:014301.

    Article  Google Scholar 

  11. Matsuo T, Maekawa T, Inaba A, Yamamuro O, Ohama M, Ichikawa M, et al. Isotope-dependent crystalline phases at ambient temperature: spectroscopic and calorimetric evidence for a deuteration-induced phase transition at 320 K in α-DCrO2. J Mol Struct. 2006;790:129–34.

    Article  CAS  Google Scholar 

  12. Saito K, Sato A, Kikuchi K, Nishikawa H, Ikemoto I, Sorai M. Calorimetric study of metal-insulator transition in (DIMET)2I3. J Phys Soc Jpn. 2000;69:3602–6.

    Article  CAS  Google Scholar 

  13. Yamamuro O, Tsukushi I, Lindqvist A, Takahara S, Ishikawa M, Matsuo T. Calorimetric study of glassy and liquid toluene and ethylbenzene: thermodynamic approach to spatial heterogeneity in glass-forming molecular liquids. J Phys Chem B. 1998;102:1605–9.

    Article  CAS  Google Scholar 

  14. Pyda M, Bartkowiak M, Wunderlich B. Computation of heat capacities of solids using a general Tarasov equation. J Therm Anal 1998;52:631–56.

    Article  CAS  Google Scholar 

  15. Tarasov VV, Yunitskii GA. Theory of heat capacity of chain and layer structures. Russ J Phys Chem. 1965;39:1109–11.

    Google Scholar 

  16. Debye P. Zur Theorie der spezifischen Wärmen. Ann Phys. 1912;344:789–839.

    Article  Google Scholar 

  17. Einstein A. Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann Phys. 1907;327:180–90.

    Article  Google Scholar 

  18. Yokota M, Sugane K, Tsukushi I, Shibata M. Evaluation of the heat capacity of amorphous polymers composed of a carbon backbone below the glass-transition temperature. Polym J. 2020;52:765–74.

    Article  CAS  Google Scholar 

  19. Yokota M, Nishiyama E, Fujimura J, Tsukushi I. Excess heat capacity for low-molecular-weight amorphous polystyrene below the glass-transition temperature: influence of end groups. Polym J. 2020;52:575–80.

    Article  CAS  Google Scholar 

  20. Yokota M, Tsukushi I. Heat capacities of polymer solids composed of polyesters and poly(oxide)s, evaluated below the glass-transition temperature. Polym J. 2020;52:1103–11.

    Article  CAS  Google Scholar 

  21. Yokota M, Tsukushi I. Prediction of the heat capacity of main-chain-type polymers below the glass transition temperature. Polym J 2020;52:1113–20.

    Article  CAS  Google Scholar 

  22. Yamamuro O, Tsukushi I, Lindqvist A, Takahara S, Ishikawa M, Matsuo T. Calorimetric study of glassy and liquid toluene and ethylbenzene: thermodynamic approach to spatial heterogeneity in glass-forming molecular liquids. J Phys Chem B. 1998;102:1605–9.

    Article  CAS  Google Scholar 

  23. Tatsumi S, Aso S, Yamamuro O. Thermodynamic study of simple molecular glasses: universal features in their heat capacity and the size of the cooperatively rearranging regions. Phys Rev Lett. 2012;109:045701.

    Article  Google Scholar 

  24. Aston JG, Kennedy RM, Schumann SC. The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of isobutane. J Am Chem Soc 1940;62:2059–63.

    Article  CAS  Google Scholar 

  25. Pitzer KS. The thermodynamics of n-heptane and 2, 2, 4-trimethylpentane, including heat capacities, heats of fusion and vaporization and entropies. J Am Chem Soc. 1940;62:1224–7.

    Article  CAS  Google Scholar 

  26. Furukawa GT, Reilly ML. Heat capacity of polyisobutylene from 0 to 380 K. J Res Natl Bur Stand. 1956;56:285–88.

    Article  CAS  Google Scholar 

  27. Nernst W, Lindemann FA. Spezifische Wärme und Quantentheorie. Z Elektrochem. 1911;17:817.

    CAS  Google Scholar 

  28. NIST Chemistry WebBook SRD69. Gaithersburg, MD, 301-975-2000. 1901. https://webbook.nist.gov/cgi/cbook.cgi?ID=C106989&Units=SI&Mask=80#IR-Spec. Accessed 7 Nov 2019.

  29. Kauzmann K. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.

    Article  CAS  Google Scholar 

  30. Angell CA, Choi Y. Crystallization and vitrification in aqueous systems. J Microsc. 1986;141:251–61.

    Article  CAS  Google Scholar 

  31. Boyer RF. Relationship of first‐ to second‐order transition temperatures for crystalline high polymers. J Appl Phys. 1954;25:825–9.

    Article  CAS  Google Scholar 

  32. Miwa Y, Urakawa O, Nobukawa S, Kutsumizu S. Selective determination of glass transition temperature and vibrational properties at the chain end of polystyrene by Fourier transform infrared measurement in combination with deuterium-labeling. Polymer 2015;59:194–9.

    Article  CAS  Google Scholar 

  33. Tashiro K, Yoshioka A. Molecular mechanism of solvent-induced crystallization of syndiotactic polystyrene glass. 2. Detection of enhanced motion of the amorphous chains in the induction period of crystallization. Macromolecules 2002;35:410–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itaru Tsukushi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyama, E., Yokota, M. & Tsukushi, I. Estimation of the configurational heat capacity of polyisobutylene, isobutane and 2,2,4-isomethylpentane above the glass transition temperature. Polym J 53, 1031–1036 (2021). https://doi.org/10.1038/s41428-021-00503-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00503-0

This article is cited by

Search

Quick links