Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of T cells in age-related diseases

Subjects

Abstract

Age-related T cell dysfunction can lead to failure of immune tolerance mechanisms, resulting in aberrant T cell-driven cytokine and cytotoxic responses that ultimately cause tissue damage. In this Review, we discuss the role of T cells in the onset and progression of age-associated conditions, focusing on cardiovascular disorders, metabolic dysfunction, neuroinflammation and defective tissue repair and regeneration. We present different mechanisms by which T cells contribute to inflammageing and might act as modulators of age-associated diseases, including through enhanced pro-inflammatory and cytotoxic activity, defective clearance of senescent cells or regulation of the gut microbiota. Finally, we propose that ‘resetting’ immune system tolerance or targeting pathogenic T cells could open up new therapeutic opportunities to boost resilience to age-related diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular basis of T cell contribution to inflammageing and age-related diseases.
Fig. 2: T cell contribution to atherosclerosis.
Fig. 3: T cell contribution to adipose tissue inflammation and pathology in obesity and ageing.
Fig. 4: T cells participate in age-related neurological disorders.
Fig. 5: T cell control of gut homeostasis is lost during ageing, driving inflammatory pathologies.
Fig. 6: T cell based-immunotherapies to increase resilience to age-related diseases.

Similar content being viewed by others

References

  1. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Horwitz, D. A., Fahmy, T. M., Piccirillo, C. A. & La Cava, A. Rebalancing immune homeostasis to treat autoimmune diseases. Trends Immunol. 40, 888–908 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Metchnikoff, I. I. The Prolongation of Life: Optimistic Studies (Springer, 2004).

  4. Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 19, 573–583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elyahu, Y. et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci. Adv. 5, eaaw8330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akbar, A. N. & Henson, S. M. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat. Rev. Immunol. 11, 289–295 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Yu, Y. R. et al. Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nat. Immunol. 21, 1540–1551 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Callender, L. A. et al. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell 19, e13067 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Ucar, D. et al. The chromatin accessibility signature of human immune aging stems from CD8+ T cells. J. Exp. Med. 214, 3123–3144 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Callender, L. A., Carroll, E. C., Bober, E. A. & Henson, S. M. Divergent mechanisms of metabolic dysfunction drive fibroblast and T-cell senescence. Ageing Res. Rev. 47, 24–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Lanna, A., Henson, S. M., Escors, D. & Akbar, A. N. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat. Immunol. 15, 965–972 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Callender, L. A. et al. Human CD8+ EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell 17, e12675 (2018).

    Article  Google Scholar 

  13. Pereira, B. I. et al. Sestrins induce natural killer function in senescent-like CD8+ T cells. Nat. Immunol. 21, 684–694 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez, I. J. et al. Immunosenescence study of T cells: a systematic review. Front. Immunol. 11, 604591 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yoshida, S. et al. The CD153 vaccine is a senotherapeutic option for preventing the accumulation of senescent T cells in mice. Nat. Commun. 11, 2482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shirakawa, K. et al. Obesity accelerates T cell senescence in visceral adipose tissue. J. Clin. Invest. 126, 4626–4639 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yi, H. S. et al. T-cell senescence contributes to abnormal glucose homeostasis in humans and mice. Cell Death Dis. 10, 249 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mogilenko, D. A. et al. Comprehensive profiling of an aging immune system reveals clonal GZMK+CD8+ T cells as conserved hallmark of inflammaging. Immunity 54, 99–115.e12 (2020).

    Article  PubMed  Google Scholar 

  19. Covre, L. P., De Maeyer, R. P. H., Gomes, D. C. O. & Akbar, A. N. The role of senescent T cells in immunopathology. Aging Cell 19, e13272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Derhovanessian, E. et al. Hallmark features of immunosenescence are absent in familial longevity. J. Immunol. 185, 4618–4624 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. Biol. Sci. Med. Sci. 69, S4–S9 (2014).

    Article  Google Scholar 

  22. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Desdín-Micó, G. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368, 1371–1376 (2020).

    Article  PubMed  Google Scholar 

  24. Bharath, L. P. et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 32, 44–55 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baixauli, F. et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab. 22, 485–498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ekiz, H. A. et al. T cell-expressed microRNA-155 reduces lifespan in a mouse model of age-related chronic inflammation. J. Immunol. 204, 2064–2075 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Faust, H. J. et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J. Clin. Invest. 130, 5493–5507 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hashimoto, K. et al. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc. Natl Acad. Sci. USA 116, 24242–24251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Petersen, C. et al. T cell-mediated regulation of the microbiota protects against obesity. Science 365, eaat9351 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pérez, M. M. et al. Interleukin-17/interleukin-17 receptor axis elicits intestinal neutrophil migration, restrains gut dysbiosis and lipopolysaccharide translocation in high-fat diet-induced metabolic syndrome model. Immunology 156, 339–355 (2019).

    Article  PubMed  Google Scholar 

  32. Gisterå, A. & Hansson, G. K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 13, 368–380 (2017).

    Article  PubMed  Google Scholar 

  33. Saigusa, R., Winkels, H. & Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 17, 387–401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II-induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frostegård, J. et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (TH1) and macrophage-stimulating cytokines. Atherosclerosis 145, 33–43 (1999).

    Article  PubMed  Google Scholar 

  37. Buono, C. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc. Natl Acad. Sci. USA 102, 1596–1601 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsilingiri, K. et al. Oxidized low-density lipoprotein receptor in lymphocytes prevents atherosclerosis and predicts subclinical disease. Circulation 139, 243–255 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Sato, K. et al. TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque. J. Exp. Med. 203, 239–250 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ramos, G. C. et al. Myocardial aging as a T-cell-mediated phenomenon. Proc. Natl Acad. Sci. USA 114, E2420–E2429 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Padgett, L. E. et al. Naive CD8+ T cells expressing CD95 increase human cardiovascular disease severity. Arterioscler. Thromb. Vasc. Biol. 40, 2845–2859 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kyaw, T. et al. Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in ApoE-deficient mice. Circulation 127, 1028–1039 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Van Duijn, J. et al. CD8+ T-cells contribute to lesion stabilization in advanced atherosclerosis by limiting macrophage content and CD4+ T-cell responses. Cardiovasc. Res. 115, 729–738 (2019).

    Article  PubMed  Google Scholar 

  44. Zhou, H. et al. CD43-mediated IFN-γ production by CD8+ T cells promotes abdominal aortic aneurysm in mice. J. Immunol. 190, 5078–5085 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Nus, M. et al. Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat. Med. 23, 601–610 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Gaddis, D. E. et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat. Commun. 9, 1095 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wigren, M. et al. Low levels of circulating CD4+FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arterioscler. Thromb. Vasc. Biol. 32, 2000–2007 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Meng, X. et al. Regulatory T cells in cardiovascular diseases. Nat. Rev. Cardiol. 13, 167–179 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Yin, M. et al. Deficient CD4+CD25+ T regulatory cell function in patients with abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 30, 1825–1831 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Lin, J. et al. The role of CD4+CD25+ regulatory T cells in macrophage-derived foam-cell formation. J. Lipid Res. 51, 1208–1217 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Robertson, A. K. L. et al. Disruption of TGF-β signaling in T cells accelerates atherosclerosis. J. Clin. Invest. 112, 1342–1350 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sharma, M. et al. Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ. Res. 127, 335–353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meng, X. et al. Regulatory T cells prevent angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E knockout mice. Hypertension 64, 875–882 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Xia, N. et al. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation 142, 1956–1973 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Zacchigna, S. et al. Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nat. Commun. 9, 2432 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wolf, D. et al. Pathogenic autoimmunity in atherosclerosis evolves from initially protective apolipoprotein B100-reactive CD4+ T-regulatory cells. Circulation 142, 1279–1293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rieckmann, M. et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J. Clin. Invest. 129, 4922–4936 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, Y. et al. A CD1d-dependent lipid antagonist to NKT cells ameliorates atherosclerosis in ApoE–/– mice by reducing lesion necrosis and inflammation. Cardiovasc. Res. 109, 305–317 (2016).

    Article  PubMed  Google Scholar 

  60. Tupin, E. et al. CD1d-dependent activation of NKT cells aggravates atherosclerosis. J. Exp. Med. 199, 417–422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, H. X. et al. CD1d-dependent natural killer T cells attenuate angiotensin II-induced cardiac remodelling via IL-10 signalling in mice. Cardiovasc. Res. 115, 83–93 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Phoksawat, W. et al. IL-17 and IFN-γ productions by CD4+ T cells and T cell subsets expressing NKG2D associated with the number of risk factors for cardiovascular diseases. Mol. Immunol. 122, 193–199 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Spyridopoulos, I. et al. CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85+ study. Aging Cell 15, 389–392 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, H. et al. Cytomegalovirus infection and relative risk of cardiovascular disease (ischemic heart disease, stroke, and cardiovascular death): a meta-analysis of prospective studies up to 2016. J. Am. Heart Assoc. 6, e005025 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bergström, I., Backteman, K., Lundberg, A., Ernerudh, J. & Jonasson, L. Persistent accumulation of interferon-γ-producing CD8+CD56+ T cells in blood from patients with coronary artery disease. Atherosclerosis 224, 515–520 (2012).

    Article  PubMed  Google Scholar 

  66. Koller, L. et al. CD4+CD28null cells are an independent predictor of mortality in patients with heart failure. Atherosclerosis 230, 414–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Youn, J. C. et al. Increased frequency of CD4+CD57+ senescent T cells in patients with newly diagnosed acute heart failure: exploring new pathogenic mechanisms with clinical relevance. Sci. Rep. 9, 12887 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Haach, F. et al. Characterization of CD4+CD28null T cells in patients with coronary artery disease and individuals with risk factors for atherosclerosis. Cell. Immunol. 281, 11–19 (2013).

    Article  Google Scholar 

  69. Liuzzo, G. et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 101, 2883–2888 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Kovalcsik, E., Antunes, R. F., Baruah, P., Kaski, J. C. & Dumitriu, I. E. Proteasome-mediated reduction in proapoptotic molecule bim renders CD4+CD28null T cells resistant to apoptosis in acute coronary syndrome. Circulation 131, 709–720 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Pan, X., Wu, F., Chen, X. & Chen, D. T cell senescence accelerates angiotensin II-induced target organ damage. Cardiovasc. Res. 117, 271–283 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Rocha, V. Z. et al. Interferon-γ, a TH1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ. Res. 103, 467–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jagannathan-Bogdan, M. et al. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J. Immunol. 186, 1162–1172 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Priceman, S. J. et al. Regulation of adipose tissue T cell subsets by Stat3 is crucial for diet-induced obesity and insulin resistance. Proc. Natl Acad. Sci. USA 110, 13079–13084 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lumeng, C. N. et al. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. J. Immunol. 187, 6208–6216 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15, 921–929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Deng, T. et al. Adipocyte adaptive immunity mediates diet-induced adipose inflammation and insulin resistance by decreasing adipose Treg cells. Nat. Commun. 8, 15725 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  80. Bertola, A. et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing TH17 responses in mice and patients. Diabetes 61, 2238–2247 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Revelo, X. S. et al. Perforin is a novel immune regulator of obesity-related insulin resistance. Diabetes 64, 90–103 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Stolarczyk, E. et al. Improved insulin sensitivity despite increased visceral adiposity in mice deficient for the immune cell transcription factor T-bet. Cell Metab. 17, 520–533 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cipolletta, D., Cohen, P., Spiegelman, B. M., Benoist, C. & Mathis, D. Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARγ effects. Proc. Natl Acad. Sci. USA 112, 482–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Bapat, S. P. et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528, 137–141 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, C. et al. TCR transgenic mice reveal stepwise, multi-site acquisition of the distinctive fat-Treg phenotype. Cell 174, 285–299.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kolodin, D. et al. Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab. 21, 543–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vasanthakumar, A. et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16, 276–285 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Kohlgruber, A. C. et al. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat. Immunol. 19, 464–474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lynch, L. et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37, 574–587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mehta, P., Nuotio-Antar, A. M. & Smith, C. W. γδ T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice. J. Leukoc. Biol. 97, 121–134 (2015).

    Article  PubMed  Google Scholar 

  92. LaMarche, N. M. et al. Distinct iNKT cell populations use IFNγ or ER stress-induced IL-10 to control adipose tissue homeostasis. Cell Metab. 32, 243–258.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Goldberg, E. L. et al. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat. Metab. 2, 50–61 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, Y. H. O. et al. Senescent T cells predict the development of hyperglycemia in humans. Diabetes 68, 156–162 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Lau, E. Y. M. et al. Type 2 diabetes is associated with the accumulation of senescent T cells. Clin. Exp. Immunol. 197, 205–213 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Da Mesquita, S. et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560, 185–191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Montagne, A. et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sweeney, M. D., Kisler, K., Montagne, A., Toga, A. W. & Zlokovic, B. V. The role of brain vasculature in neurodegenerative disorders. Nat. Neurosci. 21, 1318–1331 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kebir, H. et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat. Med. 13, 1173–1175 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Smolders, J. et al. Tissue-resident memory T cells populate the human brain. Nat. Commun. 9, 4593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Herich, S. et al. Human CCR5 high effector memory cells perform CNS parenchymal immune surveillance via GZMK-mediated transendothelial diapedesis. Brain 142, 3411–3427 (2019).

    Article  PubMed  Google Scholar 

  103. Kunis, G. et al. IFN-γ-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain 136, 3427–3440 (2013).

    Article  PubMed  Google Scholar 

  104. Brynskikh, A., Warren, T., Zhu, J. & Kipnis, J. Adaptive immunity affects learning behavior in mice. Brain. Behav. Immun. 22, 861–869 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Kipnis, J., Cohen, H., Cardon, M., Ziv, Y. & Schwartz, M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc. Natl Acad. Sci. USA 101, 8180–8185 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pasciuto, E. et al. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell 182, 625–640.e24 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Filiano, A. J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fan, K. Q. I. et al. Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior. Cell 179, 864–879.e19 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Lima, K. A. De et al. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat. Immunol. 21, 1421–1429 (2020).

    Article  PubMed Central  Google Scholar 

  111. Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ritzel, R. M. et al. Age-associated resident memory CD8 T cells in the central nervous system are primed to potentiate inflammation after ischemic brain injury. J. Immunol. 196, 3318–3330 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Meng, H. et al. Double-negative T cells remarkably promote neuroinflammation after ischemic stroke. Proc. Natl Acad. Sci. USA 116, 5558–5563 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gate, D. et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577, 399–404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Monsonego, A. et al. Increased T cell reactivity to amyloid β protein in older humans. J. Clin. Invest. 112, 415–422 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dhanwani, R. et al. T cell responses to neural autoantigens are similar in Alzheimer’s disease patients and age-matched healthy controls. Front. Neurosci. 14, 874 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sulzer, D. et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546, 656–661 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lindestam Arlehamn, C. S. et al. α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat. Commun. 11, 1875 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Baruch, K. et al. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat. Commun. 6, 7967 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Dansokho, C. et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139, 1237–1251 (2016).

    Article  PubMed  Google Scholar 

  121. Ito, M. et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565, 246–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Liesz, A. et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Schenkel, J. M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886–897 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Whibley, N., Tucci, A. & Powrie, F. Regulatory T cell adaptation in the intestine and skin. Nat. Immunol. 20, 386–396 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Nielsen, M. M., Witherden, D. A. & Havran, W. L. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 17, 733–745 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sharp, L. L., Jameson, J. M., Cauvi, G. & Havran, W. L. Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat. Immunol. 6, 73–79 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Boismenu, R. & Havran, W. L. Modulation of epithelial cell growth by intraepithelial γδ T cells. Science 266, 1253–1255 (1994).

    Article  CAS  PubMed  Google Scholar 

  128. Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Santiago, A. F. et al. Aging correlates with reduction in regulatory-type cytokines and T cells in the gut mucosa. Immunobiology 216, 1085–1093 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Weaver, C. T., Elson, C. O., Fouser, L. A. & Kolls, J. K. The TH17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu. Rev. Pathol. Mech. Dis. 8, 477–512 (2013).

    Article  CAS  Google Scholar 

  131. Pascual-Reguant, A. et al. TH17 cells express ST2 and are controlled by the alarmin IL-33 in the small intestine. Mucosal Immunol. 10, 1431–1442 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Naik, S. et al. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520, 104–108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jameson, J. et al. A role for skin γδ T cells in wound repair. Science 296, 747–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Toulon, A. et al. A role for human skin-resident T cells in wound healing. J. Exp. Med. 206, 743–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Keyes, B. E. et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin. Cell 167, 1323–1338.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nosbaum, A. et al. Cutting edge: regulatory T cells facilitate cutaneous wound healing. J. Immunol. 196, 2010–2014 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Villalta, S. A. et al. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci. Transl Med. 6, 258ra142 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Kuswanto, W. et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44, 355–367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mock, J. R. et al. Foxp3+ regulatory T cells promote lung epithelial proliferation. Mucosal Immunol. 7, 1440–1451 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zaiss, D. M. W. et al. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity 38, 275–284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dial, C. F., Tune, M. K., Doerschuk, C. M. & Mock, J. R. Foxp31 regulatory T cell expression of keratinocyte growth factor enhances lung epithelial proliferation. Am. J. Respir. Cell Mol. Biol. 57, 162–173 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hui, S. P. et al. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev. Cell 43, 659–672.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Linehan, J. L. et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 172, 784–796.e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Covre, L. P. et al. Circulating senescent T cells are linked to systemic inflammation and lesion size during human cutaneous leishmaniasis. Front. Immunol. 10, 3001 (2019).

    Article  Google Scholar 

  148. Milling, S. Ageing dangerously; homing of senescent CD8 T cells in cutaneous leishmaniasis. Immunology 159, 355–356 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bucher, C. H. et al. Experience in the adaptive immunity impacts bone homeostasis, remodeling, and healing. Front. Immunol. 10, 797 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ali, N. et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119–1129.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fu, X. et al. Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res. 25, 655–673 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Biton, M. et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175, 1307–1320.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fu, Y. Y. et al. T cell recruitment to the intestinal stem cell compartment drives immune-mediated intestinal damage after allogeneic transplantation. Immunity 51, 90–103.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Takashima, S. et al. T cell-derived interferon-γ programs stem cell death in immune-mediated intestinal damage. Sci. Immunol. 4, eaay8556 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Schreurs, R. R. C. E. et al. Human fetal TNF-α-cytokine-producing CD4+ effector memory T cells promote intestinal development and mediate inflammation early in life. Immunity 50, 462–476.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. DeJong, E. N., Surette, M. G. & Bowdish, D. M. E. The gut microbiota and unhealthy aging: disentangling cause from consequence. Cell Host Microbe 28, 180–189 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Bunker, J. J. & Bendelac, A. IgA responses to microbiota. Immunity 49, 211–224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hirota, K. et al. Plasticity of TH17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 14, 372–379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Linterman, M. A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rezende, R. M. et al. γδ T cells control humoral immune response by inducing T follicular helper cell differentiation. Nat. Commun. 9, 3151 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wang, S. et al. MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity 43, 289–303 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Neumann, C. et al. c-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host–microbiota homeostasis. Nat. Immunol. 20, 471–481 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Sáez de Guinoa, J. et al. CD 1d-mediated lipid presentation by CD 11c+ cells regulates intestinal homeostasis. EMBO J. 37, e97537 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kubinak, J. L. et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 17, 153–163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kühn, F. et al. Intestinal alkaline phosphatase targets the gut barrier to prevent aging. JCI Insight 5, e134049 (2020).

    Article  PubMed Central  Google Scholar 

  166. Sato, S., Kiyono, H. & Fujihashi, K. Mucosal immunosenescence in the gastrointestinal tract: a mini-review. Gerontology 61, 336–342 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Stebegg, M. et al. Heterochronic faecal transplantation boosts gut germinal centres in aged mice. Nat. Commun. 10, 2443 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Sage, P. T., Tan, C. L., Freeman, G. J., Haigis, M. & Sharpe, A. H. Defective TFH cell function and increased TFR cells contribute to defective antibody production in aging. Cell Rep. 12, 163–171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455–466.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Clark, R. I. et al. Distinct shifts in microbiota composition during drosophila aging impair intestinal function and drive mortality. Cell Rep. 12, 1656–1667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Vujkovic-Cvijin, I. et al. HIV-associated gut dysbiosis is independent of sexual practice and correlates with noncommunicable diseases. Nat. Commun. 11, 2448 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12, 1365–1371 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Zeng, M. Y. et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 44, 647–658 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Perruzza, L. et al. T follicular helper cells promote a beneficial gut ecosystem for host metabolic homeostasis by sensing microbiota-derived extracellular ATP. Cell Rep. 18, 2566–2575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Pomié, C. et al. Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia. Mol. Metab. 5, 392–403 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Garidou, L. et al. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab. 22, 100–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Ang, Q. Y. et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal TH17 cells. Cell 181, 1263–1275.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Martins, L. M. S. et al. Interleukin-23 promotes intestinal T helper type 17 immunity and ameliorates obesity-associated metabolic syndrome in a murine high-fat diet model. Immunology 154, 624–636 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  179. Wang, X. et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 514, 237–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Fatkhullina, A. R. et al. An interleukin-23–interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis. Immunity 49, 943–957.e9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Yamashita, T. et al. Intestinal immunity and gut microbiota as therapeutic targets for preventing atherosclerotic cardiovascular diseases. Circ. J. 79, 1882–1890 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 22, 516–523 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lutgens, E. et al. Immunotherapy for cardiovascular disease. Eur. Heart J. 40, 3937–3946 (2019).

    Article  CAS  PubMed  Google Scholar 

  186. Baruch, K. et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nat. Med. 22, 135–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Lee, A. H. & Dixit, V. D. Dietary regulation of immunity. Immunity 53, 510–523 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Dahan, S., Segal, Y. & Shoenfeld, Y. Dietary factors in rheumatic autoimmune diseases: a recipe for therapy? Nat. Rev. Rheumatol. 13, 348–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Pollizzi, K. N. & Powell, J. D. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 36, 13–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Bárcena, C. et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat. Med. 25, 1234–1242 (2019).

    Article  PubMed  Google Scholar 

  193. Ahmadi, S. et al. A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating the microbiota/taurine/tight junction axis. JCI Insight 5, e132055 (2020).

    Article  PubMed Central  Google Scholar 

  194. Nagpal, R. et al. Gut microbiome and aging: physiological and mechanistic insights. Nutr. Heal. Aging 4, 267–285 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. N. Navarro and G. Soto-Heredero for helpful comments on the manuscript. This study was supported by the Fondo de Investigación Sanitaria del Instituto de Salud Carlos III (PI19/855), the European Regional Development Fund (ERDF) and the European Commission through H2020-EU.1.1, European Research Council grant ERC-2016-StG 715322-EndoMitTalk and the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with Universidad Autónoma de Madrid in the line of action encouraging youth research doctors, in the context of the V PRICIT (Regional Programme of Research and Technological Innovation) (SI1/PJI/2019-00073). M.M. is supported by the Miguel Servet Program (CP 19/014, Fundación de Investigación del Hospital 12 de Octubre). M.M.G.H. and E.G.-R. are supported by an FPU grant (FPU19/02576) and a Juan de la Cierva grant (IJC2018-036850-I), respectively, both from Ministerio de Ciencia, Innovación y Universidades (Spain).

Author information

Authors and Affiliations

Authors

Contributions

All authors substantially contributed to this work. Conceptualization: M.M., E.C. and G.D.-M.; writing — original draft preparation: E.C., E.G.-R., M.M.G.H., G.D.-M., J.F.A. and M.M.; preparation of figures: M.M.G.H.; review and editing: E.C., E.G.-R., M.M.G.H. and M.M.

Corresponding author

Correspondence to Maria Mittelbrunn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks D. Winer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

T effector memory CD45RA+ (TEMRA) cells

A subset of human memory T cells. TEMRA cells re-express the naive T cell-associated marker CD45RA and display multiple characteristics associated with senescence.

Inflammageing

Low-grade chronic inflammation in the absence of infection that appears in association with ageing.

Senescence-associated secretory phenotype

(SASP). Cellular response associated with the irreversible arrest of cell proliferation and consisting of the release of cytokines, chemokines, proteases and growth factors that affect nearby cells in a paracrine manner.

Senescence surveillance

Immune-mediated clearance of senescent cells.

Dysbiosis

Abnormal shifts in the microbiota composition and in the associated microbiota-derived metabolites.

Bacterial translocation

The leakage of viable bacteria and/or their by-products from the intestinal lumen to peripheral tissues, such as the mesenteric lymph nodes, the adipose tissue or the liver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrasco, E., Gómez de las Heras, M.M., Gabandé-Rodríguez, E. et al. The role of T cells in age-related diseases. Nat Rev Immunol 22, 97–111 (2022). https://doi.org/10.1038/s41577-021-00557-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00557-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing