Skip to main content
Log in

Thermo-Magnetic Signature of a Superconducting Multi-band Square with Rough Surface

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In the present work, we will study the effect that the surface roughness of the sample has on the magnetic and thermodynamic properties in a mesoscopic superconducting meso-square under an external magnetic field in a zero-field cooling process. We will analyze the magnetization, superconducting electronic density, free Gibbs energy, specific heat and entropy as a function of the roughness of the sample in a superconducting two-band square taking a Josephson type inter-band coupling. We show that the magnetic and thermodynamic properties depend on the roughness percentage of its surface. Our investigation was carried out by numerically solving the two-band time-dependent Ginzburg–Landau equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. V.V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. Van Haesendonck, Y. Bruynseraede, Nature 373, 319 (1995). https://doi.org/10.1038/373319a0

    Article  ADS  Google Scholar 

  2. P.G. de Gennes, Superconductivity in Metals and Alloys (Addison-Wesley, Reading, MA, 1989)

    MATH  Google Scholar 

  3. E. Sardella, M.M. Doria, P.R.S. Netto, Phys. Rev. B. 60, 13158 (1999). https://doi.org/10.1103/PhysRevB.60.13158

    Article  ADS  Google Scholar 

  4. C.C. de Souza Silva, L.R.E. Cabral, J.A. Aguiar, Phys. Rev. B 63, 134526 (2001). https://doi.org/10.1103/PhysRevB.63.134526

  5. V.R. Misko, V.M. Fomin, J.T. Devreese, V.V. Moshchalkov, Phys. Rev. Lett. (2003). https://doi.org/10.1103/PhysRevLett.90.147003

    Article  Google Scholar 

  6. L.R.E. Cabral, B.J. Baelus, F.M. Peeters, Phys. Rev. B (2004). https://doi.org/10.1103/PhysRevB.70.144523

    Article  Google Scholar 

  7. J. Barba-Ortega, E. Sardella, J.A. Aguiar, Phys. C 470, 1964 (2010). https://doi.org/10.1016/j.physc.2010.08.008

    Article  ADS  Google Scholar 

  8. J. Barba-Ortega, E. Sardella, J.A. Aguiar, Supercond. Sci. Technol. (2011). https://doi.org/10.1088/0953-2048/24/1/015001

    Article  Google Scholar 

  9. B.J. Baelus, K. Kadowaki, F.M. Peeters, Phys. Rev. B (2005). https://doi.org/10.1103/PhysRevB.71.024514

    Article  Google Scholar 

  10. J. Barba-Ortega, E. Sardella, J.A. Aguiar, Phys. C 485, 107 (2012). https://doi.org/10.1016/j.physc.2012.11.004

    Article  ADS  Google Scholar 

  11. G.J. Kimmel, A. Glatz, V.M. Vinokur, I.A. Sadovskyy, Sci. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-018-36285-4

    Article  Google Scholar 

  12. P.S. Deo, J.P. Pekola, M. Manninen, Eur. Lett. 50(5), 649 (2000). https://doi.org/10.1209/epl/i2000-00319-x

    Article  ADS  Google Scholar 

  13. F.R. Ong, O. Bourgeois, Eur. Lett. 79(6), 67003 (2007). https://doi.org/10.1209/0295-5075/79/67003

    Article  ADS  Google Scholar 

  14. X. Ben, M.V. Milosevic, F.M. Peeters, Phys. Rev. B (2010). https://doi.org/10.1103/PhysRevB.81.064501

    Article  Google Scholar 

  15. W.A. Little, R.D. Parks, Phys. Rev. Lett. 9, 9 (1962). https://doi.org/10.1103/PhysRevLett.9.9

    Article  ADS  Google Scholar 

  16. R.D. Parks, W.A. Little, Phys. Rev. 133, A97 (1964). https://doi.org/10.1103/PhysRev.133.A97

    Article  ADS  Google Scholar 

  17. F.R. Ong, O. Bourgeois, S.E. Skipetrov, J. Chaussy, Phys. Rev. B 74, 140503(R) (2006). https://doi.org/10.1103/PhysRevB.74.140503

    Article  ADS  Google Scholar 

  18. C. Meyers, Phys. Rev. B (2003). https://doi.org/10.1103/PhysRevB.68.104522

    Article  Google Scholar 

  19. J.J. Palacios, Stat. Dyn. Asp. Mesos. Syst. (2000). https://doi.org/10.1007/3-540-45557-4_21

    Article  Google Scholar 

  20. P.H. Huang, C.M. Lu, Sci. World J. (2014). https://doi.org/10.1155/2014/863404

    Article  Google Scholar 

  21. F. Bouquet, Y. Wang, I. Sheikin, T. Plackowski, A. Junod, S. Lee, S. Tajima, Phys. Rev. Lett. (2002). https://doi.org/10.1103/PhysRevLett.89.257001

    Article  Google Scholar 

  22. A.M. Gabovich, A.I. Voitenko, Low Temp. Phys. 28, 803 (2002). https://doi.org/10.1088/0953-8984/14/6/320

    Article  ADS  Google Scholar 

  23. A.M. Gabovich, A.I. Voitenko, M.S. Li, H. Szymczak, Low Temp. Phys. 28, 803 (2002). https://doi.org/10.1063/1.1528571

    Article  ADS  Google Scholar 

  24. Y. Kleeorin, H. Thierschmann, A. Georges, L.W. Molenkamp, Y. Meir, Nat. Commun. 10(1), 1 (2019). https://doi.org/10.1038/s41467-019-13630-3

    Article  ADS  Google Scholar 

  25. M.V. Milošević, R. Geurts, Phys. C 470, 791–795 (2010). https://doi.org/10.1016/j.physc.2010.02.056

    Article  ADS  Google Scholar 

  26. C. Aguirre, E. Sardella, J. Barba-Ortega, Solid. State. Commun. (2020). https://doi.org/10.1016/j.ssc.2019.113799

    Article  Google Scholar 

  27. T. Nunes, C. Aguirre, A. de Arruda, J. Barba, Eur. Phys. J. B 93, 69 (2020). https://doi.org/10.1140/epjb/e2020-100418-4

    Article  ADS  Google Scholar 

  28. J. Garaud, J. Carlström, E. Babaev, Phys. Rev. Lett. (2011). https://doi.org/10.1103/PhysRevLett.107.197001

    Article  Google Scholar 

  29. J. Garaud, J. Carlström, E. Babaev, M. Speight, Phys. Rev. B 87, 014507 (2013). https://doi.org/10.1140/epjb/e2020-100418-4

  30. M. Zehetmayer, M. Eisterer, J. Jun, S.M. Kazakov, J. Karpinski, A. Wisniewski, H.W. Weber, Phys. Rev. B (2002). https://doi.org/10.1103/PhysRevB.66.052505

    Article  Google Scholar 

  31. C.A. Aguirre, H.D. Blas, J. Barba-Ortega, J. Low. Temp. Phys. 195, 124 (2019). https://doi.org/10.1007/s10909-019-02147-0

    Article  ADS  Google Scholar 

  32. C.A. Aguirre, H.D. Blas, J. Barba Ortega, Phys. C 554, 8 (2018). https://doi.org/10.1016/j.physc.2018.08.010

  33. M.V. Milosević, F.M. Peeters, Phys. Rev. Lett. (2004). https://doi.org/10.1103/PhysRevLett.93.267006

    Article  Google Scholar 

  34. C.D. Dewhurst, R. Cubitt, M.R. Eskildsen, S.M. Kazakov, J. Karpinski, J. Phys. C 404, 135 (2004). https://doi.org/10.1016/0921-4534(93)90777-N

    Article  Google Scholar 

  35. A.C. Romaguera, S. Silva, J. Math. Phys (2013). https://doi.org/10.1063/1.4819247

    Article  Google Scholar 

  36. D. Li, K. Lee, B.Y. Wang, M. Osada, S. Crossley, H.R. Lee, Y. Cui, Y. Hikita, H.Y. Hwang, Nature 572, 624 (2019). https://doi.org/10.1038/s41586-019-1496-5

    Article  ADS  Google Scholar 

  37. S. Zeng, C.S. Tang, X. Yin, C. Li, M. Li, Z. Huang, J. Hu, W. Liu, G.J. Omar, H. Jani, Z.S. Lim, K. Han, D. Wan, P. Yang, S.J. Pennycook, A.T.S. Wee, A. Ariando, Phys. Rev. Lett. (2020). https://doi.org/10.1103/PhysRevLett.125.147003

    Article  Google Scholar 

  38. H. Hosono, A. Yamamoto, H. Hiramatsu, Y. Ma, Mater. Today 21, 3 (2018). https://doi.org/10.1016/j.mattod.2017.09.006

    Article  Google Scholar 

  39. C.H. Wang, T.K. Chen, C.C. Chang, Y.C. Lee, M.J. Wang, K.C. Huang, P.M. Wu, M.K. Wu, Phys. C 549, 61 (2018). https://doi.org/10.1016/j.physc.2018.02.047

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C. A. Aguirre would like to thank the Brazilian agency CAPES, for financial support and the Ph.D. fellowship. J. Faúndez and S. G. Magalhães thank FAPERGS, CAPES and CNPq for partially financing this work under the Grant PRONEX 16/0490-0. A. Mosquera would like to thank the FONCIENCIAS 2018-Unimagdalena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Aguirre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre, C.A., Faúndez, J., Magalhães, S.G. et al. Thermo-Magnetic Signature of a Superconducting Multi-band Square with Rough Surface. J Low Temp Phys 204, 95–110 (2021). https://doi.org/10.1007/s10909-021-02599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02599-3

Keywords

Navigation