Skip to main content

Advertisement

Log in

Life-Cycle Economic Evaluation of Batteries for Electeochemical Energy Storage Systems

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

Batteries are considered as an attractive candidate for grid-scale energy storage systems (ESSs) application due to their scalability and versatility of frequency integration, and peak/capacity adjustment. Since adding ESSs in power grid will increase the cost, the issue of economy, that whether the benefits from peak cutting and valley filling can compensate for the cost input of adding energy storage system or not, is particularly concerned. Here we show how the cost of battery deployment can potentially be minimized by carrying out an economic assessment for the cases of different batteries applied in ESSs. To make this analysis, we develop a techno-economic model and apply it to the cases of ESSs with batteries in applications. Our results show that batteries could be attractive for investors even now if appropriate batteries are selected for ESSs applications. Valve regulated lead acid batteries has a lower cost of initial investment, which is suitable for the situations that are sensitive to the initial investment cost. Lithium iron phosphate (LiFePO4, LFP) battery can be applied in the situations with a high requirement for service life. While zinc-air batteries still have great application prospects to cope with resource depletion due to excellent performance, low cost and low pollution. The current policy debate should therefore be refocused so as to promote technological development and to encompass the removal of such barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bellocchi S, Manno M, Noussan M, Prina MG, Vellini M (2020) Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system. Energy 196:117062. https://doi.org/10.1016/j.energy.2020.117062

    Article  Google Scholar 

  2. Ullah FUM, Ullah A, Haq IU, Rho S, Baik SW (2020) Short-term prediction of residential power energy consumption via CNN and multi-layer bi-directional LSTM networks. IEEE Access 8:123369–123380. https://doi.org/10.1109/access.2019.2963045

    Article  Google Scholar 

  3. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613. https://doi.org/10.1021/cr100290v

    Article  Google Scholar 

  4. Ahmad SFK, Md Ali UF, Isa KM (2020) Compilation of liquefaction and pyrolysis method used for bio-oil production from various biomass: a review. Environ Eng Res 25(1):18–28. https://doi.org/10.4491/eer.2018.419

    Article  Google Scholar 

  5. Yu K, Zhou Y, Liu Y, Liu F, Hu L, Ao W, Zhang C, Li Y, Li J, Xie H (2020) Near-room-temperature thermoelectric materials and their application prospects in geothermal power generation. Geomech Geophys Geo-Energy Geo-Resour 6(1):25. https://doi.org/10.1007/s40948-019-00134-z

    Article  Google Scholar 

  6. Li W, Joós G, Bélanger J (2010) Real-time simulation of a wind turbine generator coupled with a battery supercapacitor energy storage system. IEEE Trans Ind Electron 57(4):1137–1145. https://doi.org/10.1109/TIE.2009.2037103

    Article  Google Scholar 

  7. Tankari MA, Camara MB, Dakyo B, Lefebvre G (2011) Wind power integration in hybrid power system with active energy management. COMPEL Int J Comput Math Electr Electron Eng 30(1):246–264. https://doi.org/10.1108/03321641111091548

    Article  Google Scholar 

  8. Tankari MA, Camara MB, Dakyo B, Lefebvre G (2013) Use of ultracapacitors and batteries for efficient energy management in wind-diesel hybrid system. IEEE Trans Sustain Energy 4(2):414–424. https://doi.org/10.1109/TSTE.2012.2227067

    Article  Google Scholar 

  9. Saleh S, Meng R, McSheffery R (2017) Evaluating the performance of digital modular protection for grid-connected permanent-magnet-generator-based wind energy conversion systems with battery storage systems. IEEE Trans Ind Appl 53(5):4186–4200. https://doi.org/10.1109/TIA.2017.271638

    Article  Google Scholar 

  10. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935. https://doi.org/10.1126/science.1212741

    Article  Google Scholar 

  11. Fathima AH, Palanisamy K, Padmanaban S, Subramaniam U (2018) Intelligence-based battery management and economic analysis of an optimized dual-vanadium redox battery (VRB) for a wind-PV hybrid system. Energies 11(10):2785. https://doi.org/10.3390/en11102785

    Article  Google Scholar 

  12. Rincón RA, Heydenrych G (2018) Batteries & supercaps: the future of electrochemical energy storage. Batter Supercaps 1(1):3–5. https://doi.org/10.1002/batt.201700001

    Article  Google Scholar 

  13. Sun J, Liu R, Ma Q, Wang T, Tang C (2020) 2nd use battery energy storage system power reduction operation. J Electr Eng Technol 15:293–298. https://doi.org/10.1007/s42835-019-00322-7

    Article  Google Scholar 

  14. Bozalakov D, Mnati MJ, Laveyne J, Desmet J, Vandevelde L (2019) Battery storage integration in voltage unbalance and overvoltage mitigation control strategies and its impact on the power quality. Energies 12(8):1501. https://doi.org/10.3390/en12081501

    Article  Google Scholar 

  15. Bui VH, Hussain A, Kim HM (2019) Q-learning-based operation strategy for community battery energy storage system (CBESS) in microgrid system. Energies 12(9):1789. https://doi.org/10.3390/en12091789

    Article  Google Scholar 

  16. Aware MV, Sutanto D (2003) Improved controller for power conditioner using high-temperature superconducting magnetic energy storage (HTS-SMES). IEEE Trans Appl Supercond 13(1):38–47. https://doi.org/10.1109/TASC.2003.811352

    Article  Google Scholar 

  17. Jinlei S, Lei P, Ruihang L, Qian M, Chuanyu T, Tianru W (2019) Economic operation optimization for 2nd use batteries in battery energy storage systems. IEEE Access 7:41852–41859. https://doi.org/10.1109/ACCESS.2019.2902402

    Article  Google Scholar 

  18. Dufo-López R, Bernal-Agustín JL, Domínguez-Navarro JA (2009) Generation management using batteries in wind farms: economical and technical analysis for Spain. Energy Policy 37(1):126–139. https://doi.org/10.1016/j.enpol.2008.08.012

    Article  Google Scholar 

  19. Saponara S, Mihet-Popa L (2019) Energy storage systems and power conversion electronics for e-transportation and smart grid. Energies 12(4):663. https://doi.org/10.3390/en12040663

    Article  Google Scholar 

  20. Kosmadakis IE, Elmasides C, Eleftheriou D, Tsagarakis KP (2019) A techno-economic analysis of a PV-battery system in Greece. Energies 12(7):1357. https://doi.org/10.3390/en12071357

    Article  Google Scholar 

  21. He H, Peng F, Gao Z, Liu X, Hu S, Zhou W, Sun H (2019) A multi-objective risk scheduling model of an electrical power system-containing wind power station with wind and energy storage integration. Energies 12(11):2153. https://doi.org/10.3390/en12112153

    Article  Google Scholar 

  22. Tazay AF, Samy MM, Barakat S (2020) A techno-economic feasibility analysis of an autonomous hybrid renewable energy sources for university building at Saudi Arabia. J Electr Eng Technol 15:2519–2527. https://doi.org/10.1007/s42835-020-00539-x

    Article  Google Scholar 

  23. Zhang H, Zhang Q, Gong T, Sun H, Su X (2018) Peak load regulation and cost optimization for microgrids by installing a heat storage tank and a portable energy system. Appl Sci (Switzerland). https://doi.org/10.3390/app8040567

    Article  Google Scholar 

  24. Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems—characteristics and comparisons. Renew Sustain Energy Rev 12(5):1221–1250. https://doi.org/10.1016/j.rser.2007.01.023

    Article  Google Scholar 

  25. Vasiyullah SFS, Bharathidasan SG (2021) Profit based unit commitment of thermal units with renewable energy and electric vehicles in power market. J Electr Eng Technol 16:115–129. https://doi.org/10.1007/s42835-020-00579-3

    Article  Google Scholar 

  26. Shen YC, Chang SH, Lin GTR, Yu HC (2010) A hybrid selection model for emerging technology. Technol Forecast Soc Chang 77(1):151–166. https://doi.org/10.1016/j.techfore.2009.05.001

    Article  Google Scholar 

  27. Hsu YL, Lee CH, Kreng VB (2010) The application of fuzzy Delphi method and fuzzy AHP in lubricant regenerative technology selection. Expert Syst Appl 37(1):419–425. https://doi.org/10.1016/j.eswa.2009.05.068

    Article  Google Scholar 

  28. Pawlak Z (1982) Rough sets. Kluwer Academic Publishers , New York

    MATH  Google Scholar 

  29. Fu B, Chen M, Fei Z, Wu J, Xu X, Gao Z, Wu Z, Yang Y (2021) Research on the stackelberg game method of building micro-grid with electric vehicles. J Electr Eng Technol. https://doi.org/10.1007/s42835-021-00677-w

    Article  Google Scholar 

  30. Park YG, Park JB (2019) Robust optimal scheduling with a grid-connected microgrid installed in a large-scale power consumer. J Electri Eng Technol 14:1881–1892. https://doi.org/10.1007/s42835-019-00227-5

    Article  Google Scholar 

  31. Teng X, Sun X, Guan L, Hu H, Wu M (2020) Self-supported transition metal oxide electrodes for electrochemical energy storage. Tungsten 2:337–361. https://doi.org/10.1007/s42864-020-00068-0

    Article  Google Scholar 

  32. Stephan A, Battke B, Beuse MD, Clausdeinken JH, Schmidt TS (2016) Limiting the public cost of stationary battery deployment by combining applications. Nat Energy 1:16079. https://doi.org/10.1038/nenergy.2016.79

    Article  Google Scholar 

  33. Bhargavi KM, Jayalakshmi NS (2019) A new control strategy for plug-in electric vehicle of DC microgrid with PV and wind power integration. J Electr Eng Technol 14:13–25. https://doi.org/10.1007/s42835-018-00013-9

    Article  Google Scholar 

  34. Amietszajew T, Fleming J, Roberts AJ, Widanage WD, Greenwood D, Kok MDR, Pham M, Brett DJL, Shearing PR, Bhagat R (2019) Hybrid thermo-electrochemical in situ instrumentation for lithium-ion energy storage. Batter Supercaps 2(11):934–940. https://doi.org/10.1002/batt.201900109

    Article  Google Scholar 

  35. Qi W, Yueyong D, Yanqing L, Fangyang L, Liangxing J, Ming J (2021) Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries. Int J Miner Metall Mater. https://doi.org/10.1007/s12613-021-2249-7

    Article  Google Scholar 

  36. Zhentao D, Yuan L, Kailiang R, Shuqin Y, Yumeng Z, Yongjie Y, Lu Z, Shumin H (2018) Enhanced electrochemical properties of LaFeO3 with Ni modification for MH–Ni batteries. Int J Miner Metall Mater 25(10):1201–1207. https://doi.org/10.1007/s12613-018-1672-x

    Article  Google Scholar 

  37. Mehta SA, Bonakdarpour A, Wilkinson DP (2017) Impact of cathode additives on the cycling performance of rechargeable alkaline manganese dioxide–zinc batteries for energy storage applications. J Appl Electrochem 47(2):167–181. https://doi.org/10.1007/s10800-016-1034-1

    Article  Google Scholar 

  38. Wu J, Liu B, Fan X, Ding J, Han X, Deng Y, Hu W, Zhong C (2020) Carbon-based cathode materials for rechargeable zinc-air batteries: from current collectors to bifunctional integrated air electrodes. Carbon Energy 2(3):370–386. https://doi.org/10.1002/cey2.60

    Article  Google Scholar 

  39. Davies D, Verde M, Mnyshenko O, Chen Y, Rajeev R, Meng Y, Elliott G (2019) Combined economic and technological evaluation of battery energy storage for grid applications. Nat Energy 4:42–50. https://doi.org/10.1038/s41560-018-0290-1

    Article  Google Scholar 

  40. Zhu K, Li X, Campana PE, Li H, Yan J (2018) Techno-economic feasibility of integrating energy storage systems in refrigerated warehouses. Appl Energy 216:348–357. https://doi.org/10.1016/j.apenergy.2018.01.079

    Article  Google Scholar 

  41. Zhong C, Liu B, Ding J, Liu X, Zhong Y, Li Y, Sun C, Han X, Deng Y, Zhao N (2020) Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat Energy 5:440–449. https://doi.org/10.1038/s41560-020-0584-y

    Article  Google Scholar 

  42. Fan X, Liu B, Liu J, Ding J, Han X, Deng Y, Lv X, Xie Y, Chen B, Hu W (2020) Battery technologies for grid-level large-scale electrical energy storage. Trans Tianjin Univ 26:92–103. https://doi.org/10.1007/s12209-019-00231-w

    Article  Google Scholar 

  43. Ioakimidis CS, Thomas D, Rycerski P, Genikomsakis KN (2018) Peak shaving and valley filling of power consumption profile in non-residential buildings using an electric vehicle parking lot. Energy 148:148–158. https://doi.org/10.1016/j.energy.2018.01.128

    Article  Google Scholar 

  44. Cho J, Jeong S, Kim Y (2015) Commercial and research battery technologies for electrical energy storage applications. Prog Energy Combust Sci 48:84–101. https://doi.org/10.1016/j.pecs.2015.01.002

    Article  Google Scholar 

  45. Skyllaskazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M (2011) Progress in flow battery research and development. J Electrochem Soc 158(8):R55–R79. https://doi.org/10.1149/1.3599565

    Article  Google Scholar 

  46. Minakshi M, Singh P (2012) Success and serendipity on achieving high energy density for rechargeable batteries. J Solid State Electrochem 16(6):2227–2233. https://doi.org/10.1007/s10008-012-1655-1

    Article  Google Scholar 

  47. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19(3):291–312. https://doi.org/10.1016/j.pnsc.2008.07.014

    Article  Google Scholar 

  48. Mousazadeh H, Keyhani A, Javadi A, Mobli H, Abrinia K, Sharifi A (2010) Evaluation of alternative battery technologies for a solar assist plug-in hybrid electric tractor. Transp Res Part D Transp Environ 15(8):507–512. https://doi.org/10.1016/j.trd.2010.05.002

    Article  Google Scholar 

  49. Luo X, Wang J, Dooner M, Clarke J (2015) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137:511–536. https://doi.org/10.1016/j.apenergy.2014.09.081

    Article  Google Scholar 

  50. Subramani G, Ramachandaramurthy VK, Padmanaban S, Mihet-Popa L, Blaabjerg F, Guerrero JM (2017) Grid-tied photovoltaic and battery storage systems with Malaysian electricity tariff—a review on maximum demand shaving. Energies 10(11):1884. https://doi.org/10.3390/en10111884

    Article  Google Scholar 

  51. Tariq M, Maswood AI, Gajanayake CJ, Gupta AK (2018) Modeling and integration of a lithium-ion battery energy storage system with the more electric aircraft 270 V DC power distribution architecture. IEEE Access 6:41785–41802. https://doi.org/10.1109/ACCESS.2018.2860679

    Article  Google Scholar 

  52. Thompson AW (2018) Economic implications of lithium ion battery degradation for vehicle-to-grid (V2X) services. J Power Sour 396:691–709. https://doi.org/10.1016/j.jpowsour.2018.06.053

    Article  Google Scholar 

  53. Hu J, Zheng J, Pan F (2019) Research progress into the structure and performance of LiFePO4 cathode materials. Acta Phys Chim Sin 35(4):361–370. https://doi.org/10.3866/pku.Whxb201805102

    Article  Google Scholar 

  54. Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H (2013) Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat Commun 4:1805. https://doi.org/10.1038/ncomms2812

    Article  Google Scholar 

  55. Zhao Z, Fan X, Ding J, Hu W, Zhong C, Lu J (2019) Challenges in zinc electrodes for alkaline zinc–air batteries: obstacles to commercialization. ACS Energy Lett 4(9):2259–2270. https://doi.org/10.1021/acsenergylett.9b01541

    Article  Google Scholar 

  56. Sun Y, Liu X, Jiang Y, Li J, Ding J, Hu W, Zhong C (2019) Recent advances and challenges in divalent and multivalent metal electrodes for metal-air batteries. J Mater Chem A 7(31):18183–18208. https://doi.org/10.1039/c9ta05094a

    Article  Google Scholar 

  57. Song Z, Ding J, Liu B, Liu X, Han X, Deng Y, Hu W, Zhong C (2020) A rechargeable Zn–air battery with high energy efficiency and long life enabled by a highly water-retentive gel electrolyte with reaction modifier. Adv Mater 32(22):1908127. https://doi.org/10.1002/adma.201908127

    Article  Google Scholar 

  58. Locatelli G, Palerma E, Mancini M (2015) Assessing the economics of large energy storage plants with an optimisation methodology. Energy 83:15–28. https://doi.org/10.1016/j.energy.2015.01.050

    Article  Google Scholar 

  59. Lu Q, Zou X, Liao K, Ran R, Zhou W, Ni M, Shao Z (2020) Direct growth of ordered N-doped carbon nanotube arrays on carbon fiber cloth as a free-standing and binder-free air electrode for flexible quasi-solid-state rechargeable Zn-air batteries. Carbon Energy 2(3):461–471. https://doi.org/10.1002/cey2.50

    Article  Google Scholar 

  60. Zhang K, Zhang Y, Zhang Q, Liang Z, Gu L, Guo W, Zhu B, Guo S, Zou R (2020) Metal-organic framework-derived Fe/Cu-substituted Co nanoparticles embedded in CNTs-grafted carbon polyhedron for Zn-air batteries. Carbon Energy 2(2):283–293. https://doi.org/10.1002/cey2.35

    Article  Google Scholar 

  61. Cao G (2018) Solvent-salt synergy offers a safe pathway towards next generation high voltage Li-ion batteries. Sci China Mater 61(10):1360–1362. https://doi.org/10.1007/s40843-018-9296-y

    Article  Google Scholar 

  62. Liu X, Yuan Y, Liu J, Liu B, Chen X, Ding J, Han X, Deng Y, Zhong C, Hu W (2019) Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc–air battery. Nat Commun 10:4767. https://doi.org/10.1038/s41467-019-12627-2

    Article  Google Scholar 

  63. Imre G, Mark J, John V, Kevin L, William P, Rachna H, Landis K, Sean H, Karen W, Ralph B (2013) Grid energy storage. US Department of Energy, Washington

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation for Excellent Young Scholar (No. 51722403), State Grid Corporation of China, Tianjin Natural Science Foundation (No. 18JCJQJC46500), and the National Youth Talent Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Cai, X., Song, C. et al. Life-Cycle Economic Evaluation of Batteries for Electeochemical Energy Storage Systems. J. Electr. Eng. Technol. 16, 2497–2507 (2021). https://doi.org/10.1007/s42835-021-00808-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-021-00808-3

Keywords

Navigation