Skip to main content
Log in

Generalization of Joukowski’s Solution for a Bubble in a Channel

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A new exact solution for the problem of potential flow of a capillary fluid past a two-dimensional bubble in a rectilinear channel is derived; the solution generalizes the known particular Joukowski’s solution. It is shown that in one of the limiting cases of an infinitely small bubble this solution coincides with the exact McLeod’s solution for a bubble in an infinite flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. G. Petrov, “The stability of a fluid cylinder in a plane-parallel flow of an ideal fluid,” J. Appl. Math. Mech. 80(3), 257–263 (2016).

    Article  MathSciNet  Google Scholar 

  2. N. E. Joukowski, “Determination of fluid motion under any condition imposed on a streamline,” in: Collected Edition, Vol. 2 (Gostekhizdat, Moscow & Leningrad, 1949, pp. 640–653) [in Russian].

    Google Scholar 

  3. E. B. McLeod, “The explicit solution of a free boundary problem involving surface tension,” J. Ration. Mech. Anal. 4(4), 557–567 (1955).

    MathSciNet  MATH  Google Scholar 

  4. O. M. Kiselev, “The problem of a gas bubble in plane ideal fluid flow,” Fluid Dynamics 4(4), 7–13 (1969).

    Article  ADS  Google Scholar 

  5. P. N. Shankar, “On the shape of a two-dimensional bubble in uniform motion,” J. Fluid Mech. 244, 187–200 (1992).

    Article  ADS  Google Scholar 

  6. L. N. Sretenskii, Theory of Wave Motions of Fluids (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  7. N. B. Volkov, N. M. Zubarev, and O. V. Zubareva, “Exact solutions to the problem on the shape of an uncharged jet of a conducting fluid in a transverse electric field,” J. Exp. Theor. Phys. 122(5), 950–955 (2016).

    Article  ADS  Google Scholar 

  8. G. D. Crapper, “An exact solution for progressive capillary waves of arbitrary amplitude,” J. Fluid Mech. 2, 532–540 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  9. O. M. Kiselev, “On exact solutions of jet problems with account for surface tension forces,” in: Proc. Workshop on Boundary Value Problems. Issue 4 (Kazan Univ. Press, 1967), pp. 53–60 [in Russian].

  10. W. Kinnersley, “Exact large amplitude capillary waves on sheets of fluid,” J. Fluid Mech. 77(2), 229–241 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  11. N. M. Zubarev and O. V. Zubareva, “Equilibrium surface configuration of a conducting liquid in external spatially periodic electric field,” Techn. Phys. Letters 36(5), 417–419 (2010).

    Article  ADS  Google Scholar 

  12. M. I. Gurevich, Theory of Jets of Ideal Fluids (Fizmatgiz, Moscow, 1961) [in Russian].

    Google Scholar 

  13. H. Lamb, Hydrodynamics (Cambridge Univ. Press, 1932).

    MATH  Google Scholar 

  14. M. A. Lavrent’ev and B. V. Shabat, Methods of Theory of the Function of a Complex Variable (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  15. P. P. Kufarev, “Solution of the problem of the oil-bearing contour for a circle,” Dokl. Akad. Nauk SSSR 60(8). 1333–1334 (1948).

    Google Scholar 

  16. S. D. Howison, “Complex variable methods in Hele—Shaw moving boundary problems,” Europ. J. Appl. Math. 3(3), 209–224 (1992).

    Article  MathSciNet  Google Scholar 

  17. M. M. Alimov, “Unsteady motion of a bubble in a Hele—Shaw cell,” Fluid Dynamics 51(2), 253–265 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  18. M. M. Alimov, “Exact solution of the Muskat—Leibenzon problem for a growing elliptic bubble,” Fluid Dynamics 51(5), 660–671 (2016).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

The study is carried out using the funds assigned within the framework of the State support of the Kazan Federal University for the purpose of its competitive growth among the leading world’s research and educational centers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Alimov.

Ethics declarations

The Author declares no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Translated by M. Lebedev

Appendices

APPENDIX А

In the case in which \({{a}_{1}} \ne 0\) we can immediately derive an expression of the parameter \(A\) in terms of \({{a}_{1}}\) from Eq. (4.10)

$$A = - a_{1}^{{ - 1}}.$$
(А.1)

Then rewriting expression (4.11) in terms of Eq. (4.10) yields

$$B = 3 - a_{1}^{2} - {{a}_{1}}(\xi _{0}^{2} + \xi _{0}^{{{\kern 1pt} - 2}}).$$
(А.2)

Substituing this expression into Eq. (4.12) and taking Eq. (А.1) into account we arrive at the expression

$$(\xi _{0}^{2} + \xi _{0}^{{ - 2}}) = F({{a}_{1}}),$$
(А.3)

where the auxiliary function \(F({{a}_{1}})\) is used (cf. Eq. (4.13)).

Relation (А.3) is a quadratic equation in \(\xi _{0}^{2}\). Solving this equation and discarding its smaller in absolute value root we obtain

$$\xi _{0}^{2} = 0.5\left[ {F({{a}_{1}}) + \sqrt {{{F}^{2}}({{a}_{1}}) - 4} } \right]$$
(А.4)

In order for the quantity \(\xi _{0}^{2}\) be real the following inequality must be fulfilled

$$F({{a}_{1}}) > 2.$$
(А.5)

It can restrict the boundaries of the interval on which \({{a}_{1}}\)varies: \( - 1 < {{a}_{1}} < 1\). In fact, let us write the quadratic equation

$$3a_{1}^{2} - 2{{a}_{1}} - 1 = 0,$$

which represents the denominator of the function \(F({{a}_{1}})\). This equation has two roots \({{a}_{1}} = - {1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0em} 3}\) and \({{a}_{1}} = 1\) and only on the interval

$$ - {1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0em} 3} < {{a}_{1}} < 1$$
(А.6)

the condition \((1 + 2{{a}_{1}} - 3a_{1}^{2}) > 0\) is fulfilled. Then the verification of inequality (А.5) with account for (4.13) reduces to the verification of inequality

$$ - {{a}_{1}}{{\left[ {(a_{1}^{{ - 1}} + {{a}_{1}}) - 2} \right]}^{2}} > 0.$$
(А.7)

This inequality is not fulfilled on the entire interval (А.6) but only on the interval

$$ - {1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0em} 3} < {{a}_{1}} < 0.$$
(А.8)

Thus, the solution is physically meaningful only on interval (А.8), where \(\xi _{0}^{2}\) is real, and using Eqs. (А.2)(А.4) the parameters \(B\) and \({{\xi }_{0}}\) can be expressed in terms of the parameter \({{a}_{1}}\)

$$B = 3 - a_{1}^{2} - {{a}_{1}}F({{a}_{1}}),\quad {{\xi }_{0}} = \sqrt {0.5\left[ {F({{a}_{1}}) + \sqrt {{{F}^{2}}({{a}_{1}}) - 4} } \right]} $$
(А.9)

The physical condition \(B > 0\) can also correct the boundaries of the interval for \({{a}_{1}}\) which is now determined by inequality (А.8). In view of Eqs. (4.13) and (А.9) and the fact that \((1 - 3a_{1}^{2} + 2{{a}_{1}}) > 0\), it is necessary to verify the fulfillment of the inequality

$$B(1 - 3a_{1}^{2} + 2{{a}_{1}}) = (1 - 3a_{1}^{2} + 2{{a}_{1}})(3 - a_{1}^{2}) - 6{{a}_{1}} + {{(1 + a_{1}^{2})}^{2}} + 2a_{1}^{3} > 0.$$

It is easy to verify that this reduces to the verification of the inequality \(4{{(1 - a_{1}^{2})}^{2}} > 0\), which is always fulfilled. Thus, on interval (А.8) we have always B > 0.

APPENDIX В

To estimate the bubble area \(S\) we will use the formula

$$S = \int\limits_{BA} {xdy - ydx} = - \frac{1}{{2i}}\int\limits_0^{2\pi } {{{{\left. {z\overline {\left( {\frac{{d{\kern 1pt} z}}{{d\sigma }}} \right)} } \right|}}_{\Gamma }}d\sigma } .$$
(В.1)

In the \(\zeta \) plane the boundary \(\Gamma \) is associated with \(\zeta = {{e}^{{i\sigma }}}\); on this boundary the differential \(d\sigma \) can be replaced by \({{(i\zeta )}^{{ - 1}}}d\zeta \) [14]. Using the operator \(\mathcal{P}\) introduced in Section 3 we can rewrite Eq. (В.1) in the form of the contour integral:

$$S = - \frac{1}{{2i}}\mathop{\int\mkern-20.8mu \circlearrowleft}\limits_{{{C}_{\zeta }}} {z(\zeta )\overline {\left( {i\zeta \frac{{{\kern 1pt} d{\kern 1pt} z}}{{d\zeta }}} \right)} \frac{{d\zeta }}{{i\zeta }}} = \frac{1}{{2i}}\mathop{\int\mkern-20.8mu \circlearrowleft}\limits_{{{C}_{\zeta }}} {\frac{{z(\zeta )}}{\zeta }\mathcal{P}\left[ {\zeta \frac{{{\kern 1pt} d{\kern 1pt} z}}{{d\zeta }}} \right]d\zeta } ,$$
(В.2)

where the contour \({{C}_{\zeta }}\) is the unit circle \({\text{|}}\zeta {\text{|}} = 1\). Taking Eqs. (3.6) and (5.1) into account we obtain

$$\mathcal{P}\left[ {\zeta \frac{{dz}}{{d\zeta }}} \right] = \frac{{\gamma ({{\xi }_{0}} + \xi _{0}^{{{\kern 1pt} - 1}}){{{(1 - {{a}_{1}}{{\zeta }^{2}})}}^{2}}\zeta }}{{\pi ({{\zeta }^{2}} - \xi _{0}^{2})({{\zeta }^{2}} - \xi _{0}^{{ - 2}})}}.$$
(В.3)

Substituting Eqs. (5.2) and (В.3) into expression (В.2) we obtain the expression

$$S = \frac{{\gamma ({{\xi }_{0}} + \xi _{0}^{{{\kern 1pt} - 1}})}}{{2\pi i}}\left[ {\mathop{\int\mkern-20.8mu \circlearrowleft}\limits_{{{C}_{\zeta }}} {\frac{{{{\Phi }^{ - }}(\zeta )d\zeta }}{{({{\zeta }^{2}} - \xi _{0}^{{ - 2}})}}} - \mathop{\int\mkern-20.8mu \circlearrowleft}\limits_{{{C}_{\zeta }}} {\frac{{{{\Phi }^{ + }}(\zeta )d\zeta }}{{({{\zeta }^{2}} - \xi _{0}^{2})}}} } \right],$$
(В.4)

where two auxiliary functions \({{\Phi }^{ - }}(\zeta )\) and \({{\Phi }^{ + }}(\zeta )\) are introduced (cf. Eq. (5.5)).

The integrand of the first integral (В.4) is regular within the unit circle \({\text{|}}\zeta {\text{|}} < 1\) everywhere except for the simple poles at points \(\zeta = \pm \xi _{0}^{{{\kern 1pt} - 1}}\). At the same time, the integrand of the second integral (В.4) is regular outside the unit circle \({\text{|}}\zeta {\text{|}} > 1\) everywhere, except for the simple poles at points \(\zeta = \pm {{\xi }_{0}}\), while at infinity it behaves as follows:

$$\zeta \to \infty {\text{:}}\quad \frac{{{{\Phi }^{ + }}(\zeta )}}{{({{\zeta }^{2}} - \xi _{0}^{2})}} = \left[ {\frac{{\gamma a_{1}^{4}({{\xi }_{0}} + \xi _{0}^{{{\kern 1pt} - 1}})}}{\pi } - \frac{{2a_{1}^{2}{{D}_{1}}}}{{{{\xi }_{0}}}}} \right]{{\zeta }^{{ - 1}}} + O({\text{|}}\zeta {{{\text{|}}}^{{ - 3}}}).$$

Then the contour integrals (В.4) can be calculated using theory of residues [14]

$$S = \gamma ({{\xi }_{0}} + \xi _{0}^{{ - 1}})\left[ {\sum\limits_{\zeta = \pm \xi _{0}^{{ - 1}}} {{\text{Res\;}}\frac{{{{\Phi }^{ - }}(\zeta )}}{{({{\zeta }^{2}} - \xi _{0}^{{ - 2}})}}} + \sum\limits_{\zeta = \pm {\kern 1pt} {{\xi }_{0}},\infty } {{\text{Res\;}}\frac{{{{\Phi }^{ + }}(\zeta )}}{{({{\zeta }^{2}} - \xi _{0}^{2})}}} } \right].$$

As a result, we obtain a closed expression for the bubble area S (cf. Eq. (5.6)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimov, M.M. Generalization of Joukowski’s Solution for a Bubble in a Channel. Fluid Dyn 56, 321–333 (2021). https://doi.org/10.1134/S0015462821030010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462821030010

Keywords:

Navigation