Skip to main content
Log in

A Very Large Eddy Simulation Model Using a Reductionist Inlet Turbulence Generator and Wall Modeling for Stable Atmospheric Boundary Layers

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Despite many advances in numerical simulation of stable boundary layers (SBL), most of the models developed are complex and computationally expensive. A computational fluid dynamics (CFD) strategy is proposed that combines very large eddy simulation (VLES) with a reductionist inflow turbulence generator and wall modeling aimed at affordable and practical simulation of SBL. Unlike the standard LES requiring the filter width to be of the scale of grid size, the filter width in VLES can be set at a value between the grid size and the large characteristic length scales of the flow. This strategy, along with the application of wall treatments, results in the significant reduction of computational costs. Moreover, the reductionist approach of the inflow turbulence generator minimizes the number of required input parameters to the model, which makes the model suitable for practical applications. A series of sensitivity studies are conducted to refine the numerical parameters including the grid resolution, filter width, and the inflow turbulence generator variables controlling the length and time scales of the eddies generated at the inlet. The performance of the model is successfully evaluated against wind-tunnel measurements for mean velocity, mean temperature, and turbulence profiles for four different thermal stability levels ranging from weak to strong stability. The spectral analysis of the model for velocity components, temperature, momentum, and heat fluxes showed that the model is capable of successfully resolving the energy cascade for almost two orders of magnitude of wave numbers and partially matching the well-known log-log slopes for the inertial subrange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. Van Buren, O. Williams, and A. J. Smits, “Turbulent boundary layer response to the introduction of stable stratification,” J. Fluid Mech. 811, 569–581 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. J. Huang and E. Bou-Zeid, “Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I: A large-eddy simulation study,” J. Atmos. Sci. 70, 1513–1527 (2013).

    Article  ADS  Google Scholar 

  3. R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer, Dordrecht, 1988).

    Book  MATH  Google Scholar 

  4. A. A. Aliabadi, M. Moradi, D. Clement, W. D. Lubitz, and B. Gharabaghi, “Flow and temperature dynamics in an urban canyon under a comprehensive set of wind directions, wind speeds, and thermal stability conditions,” Environ. Fluid Mech. 19, 81–109 (2019).

    Article  Google Scholar 

  5. A. A. Aliabadi, Theory and Applications of Turbulence: A Fundamental Approach for Scientists and Engineers (Amir A. Aliabadi Publ., Guelph, 2018).

    Google Scholar 

  6. V. Kumar, J. Kleissl, C. Meneveau, and M. B. Parlange, “Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: Atmospheric stability and scaling issues.” Water Resource Res. 42(W06D09), 1–18 (2006).

  7. J. Sandham and M. L. Waite, “Spectral energy balance in dry convective boundary layers,” J. Turbul. 16(7), 650—675 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  8. B.-S. Han, J.-J. Baik, S.-B. Park, and K.-H. Kwak, “Large-eddy simulations of reactive pollutant dispersion in the convective boundary layer over flat and urban-like surfaces,” Boundary-Layer Meteorol. 172(2), 271–289, (2019).

    Article  ADS  Google Scholar 

  9. A. A. Aliabadi, N. Veriotes, and G. Pedro, “A very large-eddy simulation (VLES) model for the investigation of the neutral atmospheric boundary layer,” J. Wind Eng. Ind. Aerodyn. 183, 152—171 (2018).

    Article  Google Scholar 

  10. G. R. Tabor and M. H. Baba-Ahmadi, “Inlet conditions for large eddy simulation: A review,” Comput. Fluids 39(4), 553–567 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. T. S. Lund, X. Wu, and K. D. Squires, “Generation of turbulent inflow data for spatially-developing boundary layer simulations,” J. Comput. Phys. 140(2), 233–258 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. P. R. Spalart, “Direct simulation of a turbulent boundary layer up to Rθ = 1410,” J. Fluid Mech. 187, 61–98 (1988).

    Article  ADS  MATH  Google Scholar 

  13. M. E. Sergent, Towards a coupling methodology between large eddy simulation and statistical models (Ph.D. Thesis, École Centrale De Lyon, Lyon, France, 2002).

  14. S. Benhamadouche, N. Jarrin, Y. Addad, and D. Laurence, “Synthetic turbulent inflow conditions based on a vortex method for large-eddy simulation,” Progr. Comput. Fluid Dyn. 6(1–3), 50—57 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Mathey, D. Cokljat, J. P. Bertoglio, and E. Sergent, “Assessment of the vortex method for large eddy simulation inlet conditions,” Progr. Comput. Fluid Dyn. 6(1–3), 58–67 (2006).

  16. B. Xie, F. Gao, J. Boudet, L. Shao, and L. Lu, “Improved vortex method for large-eddy simulation inflow generation,” Computers Fluids 168, 87–100 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Aboshosha, A. Elshaer, G. T. Bitsuamlak, and A. El Damatty, “J. Wind Eng. Ind. Aerodyn. 142, 198–216 (2015).

    Article  Google Scholar 

  18. R. J. Beare and M. K. Macvean, “Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings,” Boundary-Layer Meteorol. 112, 257 (2004).

    Article  ADS  Google Scholar 

  19. S. R. de Roode, H. J. J. Jonker, B. J. H. Van De Wiel, V. Vertregt, and V. Perrin, “A diagnosis of excessive mixing in Smagorinsky subfilter-scale turbulent kinetic energy models,” J. Atmos. Sci. 74, 1495–1511 (2017).

    Article  ADS  Google Scholar 

  20. J. Smagorinsky, “General circulation experiments with the primitive equations: I. The basic equations,” Mon. Weather Rev. 91, 99–164 (1963).

    Article  ADS  Google Scholar 

  21. J. Fröhlich, C. P. Mellen, W. Rodi, L. Temmerman, and M. A. Leschziner, “Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions,” J. Fluid Mech. 526, 19–66 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. X.-X. Li, R. E. Britter, T. Y. Koh, L. K. Norford, C.-H. Liu, D. Entekhabi, and D. Y. C. Leung, “Large-eddy simulation of flow and pollutant transport in urban street canyons with ground heating,” Boundary-Layer Meteorol. 137(2), 187–204 (2010).

    Article  ADS  Google Scholar 

  23. A. A. Aliabadi, E. S. Krayenhoff, N. Nazarian, L. W. Chew, P. R. Armstrong, A. Afshari, and L. K. Norford, “Effects of roof-edge roughness on air temperature and pollutant concentration in urban canyons,” Boundary-Layer Meteorol. 164(2), 249–279 (2017).

    Article  ADS  Google Scholar 

  24. P. J. Mason and S. H. Derbyshire, “Large eddy simulation of the stably-stratified atmospheric boundary layer,” Boundary-Layer Meteorol. 53, 117–162 (1990).

    Article  ADS  Google Scholar 

  25. E. Saiki, C.-H. Moeng, and P. Sullivan, “Large-eddy simulation of the stably stratified planetary boundary layer,” Boundary-Layer Meteorol. 95, 1–30 (2000).

    Article  ADS  Google Scholar 

  26. J. Kleissl, M. B. Parlange, and C. Meneveau, “Field experimental study of dynamic Smagorinsky models in the atmospheric surface layer,” J. Atmos. Sci. 61, 2296–2307 (2004).

    Article  ADS  Google Scholar 

  27. E. Bou-Zeid, C. Higgins, H. Huwald, C. Meneveau, and M. B. Parlange, “Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier,” J. Fluid Mech. 665, 480–515 (2010).

    Article  ADS  MATH  Google Scholar 

  28. T. Michioka, H. Takimoto, H. Ono, and A. Sato, “Reynolds-number dependence of gas dispersion over a wavy wall,” Boundary-Layer Meteorol. 164, 401–418 (2017).

    Article  ADS  Google Scholar 

  29. M. R. Raupach, R. A. Antonia, and S. Rajagopalan, “Rough-wall turbulent boundary layers,” Appl. Mech. Rev. 44(1), 1–25 (1991).

    Article  ADS  Google Scholar 

  30. C. L. V. Jayatillaka, “The influence of Prandtl number and surface roughness on the resistance of the laminar sublayer to momentum and heat transfer,” Progr. Heat Mass Transf. 1, 193 (1969).

    Google Scholar 

  31. C. Balaji, M. Hölling, and H. Herwig, “A temperature wall function for turbulent mixed convection from vertical, parallel plate channels,” Int. J. Therm. Sci. 47, 723–729 (2008).

    Article  Google Scholar 

  32. T. Defraeye, B. Blocken, and J. Carmeliet, “CFD simulation of heat transfer at surfaces of bluff bodies in turbulent boundary layers: Evaluation of a forced-convective temperature wall function for mixed convection,” J. Wind Eng. Ind. Aerodyn. 104, 439–446 (2012).

    Article  Google Scholar 

  33. V. B. L. Boppana, Z.-T. Xie, and I. P. Castro, “Thermal stratification effects on flow over a generic urban canopy,” Boundary-Layer Meteorol. 153, 141–162 (2014).

    Article  ADS  Google Scholar 

  34. J. Fröhlich and D. von Terzi, “Hybrid LES/RANS methods for the simulation of turbulent flows,” Progr. Aerosp. Sci. 44, 349–377 (2008).

    Article  ADS  Google Scholar 

  35. J. Thé and H. Yu, “A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods,” Energy 138(1), 257–289 (2017).

    Article  Google Scholar 

  36. M. Shur, P. R. Spalart, M. Strelets, and A. A. Travin, “Rapid and accurate switch from RANS to LES in boundary layers using an overlap region,” Flow Turbul. Combust. 86(2), 179–206 (2011).

    Article  MATH  Google Scholar 

  37. M. Labois and D. Lakehal, “Very-large eddy simulation (V-LES) of the flow across a tube bundle,” Nucl. Eng. Des. 241(6), 2075–2085 (2011).

    Article  Google Scholar 

  38. C. Speziale, “Turbulence modeling for time-dependent RANS and VLES: a review,” AIAA J. 36(2), 173–184 (1998).

    Article  ADS  MATH  Google Scholar 

  39. S. T. Johansen, J. Wu, and W. Shyy, “Filter-based unsteady RANS computations,” Int. J. Heat Fluid Flow 25(1), 10–21 (2004).

    Article  Google Scholar 

  40. S. B. Pope, Turbulent flows (Cambridge University Press, Cambridge, 2000).

    Book  MATH  Google Scholar 

  41. C. J. Greenshields, OpenFOAM: The Open Source CFD Toolbox, User Guide, Version 4.0. (OpenFOAM Foundation Ltd., London, 2016).

  42. E. R. van Driest, “On turbulent flow near a wall,” J. Aeronaut. Sci. 23(11), 1007–1011 (1956).

    Article  MATH  Google Scholar 

  43. M. Ricci, L. Patruno, and S. de Miranda, “Wind loads and structural response: Benchmarking LES on a low-rise building,” Eng. Struct. 144, 26–42 (2017).

    Article  Google Scholar 

  44. Y. Ohya, “Wind-tunnel study of atmospheric stable boundary layers over a rough surface,” Boundary-Layer Meteorol. 98(1), 57–82 (2001).

    Article  ADS  Google Scholar 

  45. B. Vreman, B. Geurts, and H. Kuerten, “Comparison of numerical schemes in large-eddy simulation of the temporal mixing layer,” Int. J. Numer. Meth. Fluids 22(4), 297–312 (1996).

    Article  MATH  Google Scholar 

  46. P. Moin, “Advances in large eddy simulation methodology for complex flows,” Int. J. Heat Fluid Flow 23, 710–720 (2002).

    Article  Google Scholar 

  47. P. Sagaut, Large Eddy Simulation for Incompressible Flows: an Introduction (Springer, Leipzig, 2006).

    MATH  Google Scholar 

  48. N. A. Adams, S. Hickel, T. Kempe, and J. A. Domaradzki, “On the relation between subgrid-scale modeling and numerical discretization in large-eddy simulation,” in: Complex Effects in Large Eddy Simulations, Ed. by S. C. Kassinos, C. A. Langer, G. Iaccarino, and P. Moin (Springer, Berlin, 2007), pp. 15–27.

    MATH  Google Scholar 

  49. M. Kornhaas, D. C. Sternel, and M. Schafer, “Influence of time step size and convergence criteria on large eddy simulations with implicit time discretization,” in: Quality and Reliability of Large-Eddy Simulations, Ed. by J. Meyers, B. J. Geurts, and P. Sagaut (Springer, Berlin, 2008), pp. 119–130.

    MATH  Google Scholar 

  50. D. Fauconnier, C. De Langhe, and E. Dick, “Construction of explicit and implicit dynamic finite difference schemes and application to the large-eddy simulation of the Taylor–Green vortex,” J. Comput. Phys. 228, 8053–8084 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. M. Ahmadi-Baloutaki, R. Carriveau, and D. S.-K. Ting, “Effect of free-stream turbulence on flow characteristics over a transversely-grooved surface,” Exp. Therm. Fluid Sci. 51, 56–70 (2013).

    Article  Google Scholar 

  52. J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, and C. J. Readings, “Turbulence structure in the convective boundary layer,” J. Atmos. Sci. 33, 2152–2169 (1976).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors are indebted to Joel Best, Jeff Madge, and Matthew Kent from the IT group at the University of Guelph for setting up the simulation platforms. The authors acknowledge the assistance of Manoj Kizhakkeniyil in converting the OpenFOAM solver from version 3.0 to version 4.0. In-kind technical support for this work was provided by Rowan Williams Davies & Irwin Inc (RWDI). Useful discussions with Gonçalo Pedro and Françoise Robe at RWDI are acknowledged. Useful discussions with John D. Wilson and Thomas Flesch, Department of Earth and Atmospheric Sciences, University of Alberta, are acknowledged.

Funding

This work was supported by the Discovery Grant program (no. 401231) from the Natural Sciences and Engineering Research Council (NSERC) of Canada; Government of Ontario through the Ontario Centres of Excellence (OCE) under the Alberta-Ontario Innovation Program (AOIP) (no. 053450); and Emission Reduction Alberta (ERA) (no. 053498). OCE is a member of the Ontario Network of Entrepreneurs (ONE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Ahmadi-Baloutaki or A. A. Aliabadi.

Ethics declarations

The Authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi-Baloutaki, M., Aliabadi, A.A. A Very Large Eddy Simulation Model Using a Reductionist Inlet Turbulence Generator and Wall Modeling for Stable Atmospheric Boundary Layers. Fluid Dyn 56, 413–432 (2021). https://doi.org/10.1134/S0015462821020026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462821020026

Keywords:

Navigation