Skip to main content
Log in

Effect of Preliminary Tension and Conditions of Artificial Aging on the Microstructure and Properties of Al – Li Alloy 2A97-T3

  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of various aging modes and preliminary tension (3%) on the microstructure and mechanical properties of Al – Li alloy 2A97-T3 (1.31% Li, 3.55% Cu, 0.37% Mg, the remainder aluminum) is studied. Scanning electron microscopy in combination with energy-dispersive spectroscopy and EBSD analysis are applied. The ultimate tensile strength is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Raj, Jenix Rino, John Xavier, Shanmugavel, Balasivanandha Prabu, “Thermal stability of ultrafine grained AA8090 Al – Li alloy processed by repetitive corrugation and straightening,” J. Mater. Res. Technol., 8(3), 3251 – 3260 (2019).

    Article  Google Scholar 

  2. Liu, Fei, Zhiyi, et al., “Analysis of empirical relation between microstructure, texture evolution and fatigue properties of an Al – Cu – Li alloy during different pre-deformation processes,” Mater. Sci. Eng. A (Struct. Mater.: Prop., Microstr. Processing), 726, 309 – 319 (2018).

  3. Z. Jin, L. Zhide, X. Fushun, et al., “Regulating effect of pre-stretching degree on the creep aging process of Al – Cu – Li alloy,” Mater. Sci. Eng. A, 763(138157), 1 – 8 (2019).

    Google Scholar 

  4. Libin, Hu, Lihua, et al., “The effects of pre-deformation on the creep aging behavior and mechanical properties of Al – Li – S4 alloys,” Mater. Sci. Eng. A, 703, 496 – 502 (2017).

  5. Y. Lin, C. Lu, C. Wei, et al., “Effect of aging treatment on microstructures, tensile properties and intergranular corrosion behavior of Al – Cu – Li alloy,” Mater. Character., 141, 163 – 168 (2018).

    Article  CAS  Google Scholar 

  6. L. Jia, R. Xueping, H. Hongliang, and Z. Yanling, “Microstructural evolution and superplastic deformation mechanisms of as-rolled 2A97 alloy at low-temperature,” Mater. Sci. Eng. A, 759, 19 – 29 (2019).

    Article  CAS  Google Scholar 

  7. Z. Liwei, G. Wenli, G. Zhaohui, et al., “Hot deformation characterization of as-homogenized Al – Cu – Li X2A66 alloy through processing maps and microstructural evolution,” J. Mater. Sci. Technol., 35, 2409 – 2421 (2019).

    Article  Google Scholar 

  8. A. Abd El-Aty, Y. Xu, X. Guo, et al., “Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al – Li alloys: A review,” J. Adv. Res., 10, 49 – 67 (2018).

    Article  CAS  Google Scholar 

  9. T. Dursun and C. Soutis, “Recent developments in advanced aircraft aluminium alloys,” Mater. Design, 56, 862 – 871 (2014).

    Article  CAS  Google Scholar 

  10. W. Fan, B. P. Kashyap, and M. Chaturvedi, “Anisotropy in flow and microstructural evolution during superplastic deformation of a layered-microstructured AA8090 Al – Li alloy,” Mater. Sci. Eng. A (Struct. Mater.: Prop., Microstr. Processing), 349(1 – 2), 166 – 182 (2003).

  11. J. Zhong, S. Zhong, Z. Q. Zheng, et al., “Fatigue crack initiation and early propagation behavior of 2A97 Al – Li alloy,” Trans. Nonferr. Met. Soc. China, 24(2), 303 – 309 (2014).

    Article  CAS  Google Scholar 

  12. H. Y. Li and X. C. Lu, “Springback and tensile strength of 2A97 aluminum alloy during age forming,” Trans. Nonferr. Met. Soc. China, 25(4), 1043 – 1049 (2015).

    Article  CAS  Google Scholar 

  13. C. Gao, Y. Luan, J. C. Yu, et al., “Effect of thermo-mechanical treatment process on microstructure and mechanical properties of 2A97 Al – Li alloy,” Trans. Nonferr. Met. Soc. China, 24, 2196 – 2202 (2014).

    Article  CAS  Google Scholar 

  14. Z. S. Yuan, L. U. Zheng, Y. H. Xie, et al., “Effects of RRA treatments on microstructures and properties of a new high-strength aluminum-lithium alloy-2A97,” Chinese J. Aeronaut., 20, 187 – 192 (2007).

    Article  Google Scholar 

  15. C. Gao, R, Gao, and Y. Ma, “Microstructure and mechanical properties of friction spot welding aluminium-lithium 2A97 alloy,” Mater. Design, 83, 719 – 727 (2015).

  16. J. Ning, L. J. Zhang, Q. L. Bai, et al., “Comparison of the microstructure and mechanical performance of 2A97 Al – Li alloy joints between autogenous and non-autogenous laser welding,” Mater. Design, 120 (Complete), 144 – 156 (2017).

  17. H. Chen, L. Fu, P Liang, et al., “Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al – Li alloy thin sheets,” Mater. Charact., 125, 160 – 173 (2017).

  18. H. Chen, L. Fu, and P. Liang, “Microstructure, texture and mechanical properties of friction stir welded butt joints of 2A97 AlLi alloy ultra-thin sheets,” J. Alloys Compd., 92, 155 – 169 (2017).

    Article  Google Scholar 

  19. L. Chen, Y. N. Hu, E. G. He, et al., “Microstructural and failure mechanism of laser welded 2A97 Al – Li alloys via synchrotron 3D tomography,” Int. J. Lightweight Mater. Manuf., 1, 169 – 178 (2018).

    Google Scholar 

  20. H. Yan, Study on the Heat Treatment Process and Microstructure Properties of the 2A97 Aluminum-Lithium Alloy [D] [in Chinese], Hunan University (2010).

  21. X. Zhang, X. Zhou, T. Hashimoto, et al., “The influence of grain structure on the corrosion behavior of 2A97-T3 Al – Cu – Li alloy,” Corros. Sci., 116, 14 – 21 (2017).

    Article  CAS  Google Scholar 

  22. X. Zhang, X. Zhou, T. Hashimoto, et al., “Corrosion behavior of 2A97-T6 Al – Cu – Li alloy: The influence of non-uniform precipitation,” Corros. Sci., 132, 1 – 8 (2018).

    Article  CAS  Google Scholar 

  23. G. Chen, M. Chen, N. Wang, et al., “Hot forming process with synchronous cooling for AA2024 aluminum alloy and its application,” Int. J. Adv. Manuf. Technol., 86, 133 – 139 (2016).

    Article  Google Scholar 

  24. X. Fan, Z. He, K. Zheng, et al., “Strengthening behavior of Al – Cu – Mg alloy sheet in hot forming – quenching integrated process with cold – hot dies,” Mater. Design, 83, 557 – 565 (2015).

    Article  CAS  Google Scholar 

  25. X. Fan, Z. He, S. Yuan, et al., “Experimental investigation on hot forming – quenching – integrated process of 6A02 aluminum alloy sheet,” Mater. Sci. Eng. A, 573, 154 – 160 (2013).

    Article  CAS  Google Scholar 

  26. H. Li, X. Guo, W. Wang, et al., “Forming performance of an as-quenched novel aluminum-lithium alloy,” Int. J. Adv. Manuf. Technol., 78, 659 – 666 (2015).

    Article  CAS  Google Scholar 

  27. M. L. Wang, P. P. Jin, J. H. Wang, et al., “Hot deformation behavior of as-quenched 7005 aluminum alloy,” Trans. Nonfer. Met. Soc. China, 24(9), 2796 – 2804 (2014).

    Article  CAS  Google Scholar 

  28. X.W. Yang, Z. H. Lai, J. Zhu, et al., “Hot compressive deformation behavior of the as-quenched A357 aluminum alloy,” Mater. Sci. Eng. B (Adv. Funct. Solid-State Mater.), 177, 1721 – 1725 (2012).

    Article  CAS  Google Scholar 

Download references

The authors acknowledge the financial support of the National Natural Science Funds of China (Grant No. 51175252) and the technical support of the Ceshigo Research Service “www.ceshigo.com” in the EBSD study.

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 47 – 52, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Chen, MH. Effect of Preliminary Tension and Conditions of Artificial Aging on the Microstructure and Properties of Al – Li Alloy 2A97-T3. Met Sci Heat Treat 63, 47–52 (2021). https://doi.org/10.1007/s11041-021-00645-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00645-1

Key words

Navigation