Skip to main content
Log in

Kinematic Viscosity Prediction Guide: Reviewing and Evaluating Empirical Models for Diesel Fractions, and Biodiesel–Diesel Blends According to the Temperature and Feedstock

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Experimental analysis of viscosity can be a straightforward and inexpensive analysis for few samples. However, in industrial processes that have high demands of properties measurements, the determination of viscosity and other properties involves time-consuming with sampling, analysis, and availability of results. Also in refineries, the sampling routines for experimental determination of the viscosity of streams are not enough to represent variations that occur in the process, such as the shift of an oil tank in distillation units. In addition, besides requiring cost of operating personnel and laboratory analyst, all of these steps can take up to one shift until the result is available. Therefore, as an alternative, the use of predictive methods of kinematic viscosity are essential. Empirical methods have been used in simulations and design calculations of streams and mixture at industries regarding kinematic viscosity (KV) of petroleum fractions and fuels at different temperatures. However, there are uncertainties about the most accurate method to use at specific condition (temperature, feedstock, volume fraction) which might affect the KV prediction of fuels with unknown composition. Therefore, we assembled and evaluated several methods to predict KV of different diesel systems. In addition, new methods for predicting KV of diesel fractions at several temperatures were also developed for improving the estimation accuracy. As a result, we developed a guide with suggestions of the most accurate models to be applied for diesel fraction from assays, diesel fractions S500 from blend system at several temperatures, and biodiesel–diesel blends at different temperatures, volume fractions, and feedstock.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

KV:

Kinematic viscosity

K API :

API factor

ν T :

Kinematic viscosity at T temperature

d 15 :

Density at 15 °C

API :

API gravity

T b :

Boiling point

A, B :

Parameters for liquid related to viscosity

Z :

Parameter for viscosity temperature equation

w:

Mass fraction

V:

Volume fraction

x:

Mole fraction

M:

Molar mass

VBI :

Viscosity blend index

ν m :

Mixture kinematic viscosity

AAD:

Average absolute deviation

% AAD:

Percentage average absolute deviation

ν D :

Diluent viscosity for Miadonye et al. model

ν B :

Bitumen viscosity for Miadonye et al. model

ρ A, ρ B :

Density for fluid A and B for Shu model

T10, T30, T50:

Temperature at 10, 30, and 50 vol% distilled

T:

Temperature

FAME:

Fatty acid methyl esters

FAEE:

Fatty acid ethyl esters

C:

Walther parameter

α :

Alpha, a parameter from Lederer model

a, n:

Constants from Miadonye additional parameter model

References

  1. A.K. Mehrotra, W.D. Monnery, W.Y. Svrcek, A review of practical calculation methods for the viscosity of liquid hydrocarbons and their mixtures. Fluid Phase Equilib. 117, 344–355 (1996)

    Article  Google Scholar 

  2. M.M. Abbott, T.G. Kaufmann, L. Domash, A correlation for predicting liquid viscosities of petroleum fractions. Can. J. Chem. Eng. 49, 379–384 (1971). https://doi.org/10.1002/cjce.5450490314

    Article  Google Scholar 

  3. R.E. Tate, K.C. Watts, C.A.W. Allen, K.I. Wilkie, The viscosities of three biodiesel fuels at temperatures up to 300 8C. Fuel 85, 1010–1015 (2006). https://doi.org/10.1016/j.fuel.2005.10.015

    Article  Google Scholar 

  4. E. Alptekin, M. Canakci, Determination of the density and the viscosities of biodiesel-diesel fuel blends. Renew. Energy 33, 2623–2630 (2008). https://doi.org/10.1016/j.renene.2008.02.020

    Article  Google Scholar 

  5. ASTM, ASTM D975–20a Standard Specification for Diesel Fuel (ASTM International, West Conshohocken, 2020).

    Google Scholar 

  6. ASTM, D7467–20a standard specification for diesel fuel oil, biodiesel blend (B6 to B20). Am. Soc. Test. Mater. (2020). https://doi.org/10.1520/D7467-20A

    Article  Google Scholar 

  7. A. Demirbas, Importance of biodiesel as transportation fuel. Energy Policy 35, 4661–4670 (2007). https://doi.org/10.1016/j.enpol.2007.04.003

    Article  Google Scholar 

  8. B. Sajjadi, A.A.A. Raman, H. Arandiyan, A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models. Renew. Sustain. Energy Rev. 63, 62–92 (2016). https://doi.org/10.1016/j.rser.2016.05.035

    Article  Google Scholar 

  9. M.T. Pham, A.T. Hoang, A.T. Le, A.R.M.S. Al-Tawaha, H. Van Dong, V.V. Le, Measurement and prediction of the density and viscosity of biodiesel blends. Int. J. Technol. 5, 1015–1026 (2018). https://doi.org/10.14716/ijtech.v9i5.1950

    Article  Google Scholar 

  10. M. Gülüm, A. Bilgin, Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density. Fuel 199, 567 (2017). https://doi.org/10.1016/j.fuel.2017.03.001

    Article  Google Scholar 

  11. M.D.C. Faria, M.L.M. Valle, R.R. Da Cunha Pinto, The influence of physico-chemical properties of diesel/biodiesel mixtures on atomization quality in diesel direct injection engines. SAE Tech. Pap. (2005). https://doi.org/10.4271/2005-01-4154

    Article  Google Scholar 

  12. ASTM, D6751–20 Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels 1 (ASTM International, West Conshohocken, 2020), p. 2020

    Google Scholar 

  13. W.R. Shu, A viscosity correlation for mixtures of heavy oil, bitumen, and petroleum fractions. Soc. Pet. Eng. J. 24, 277–282 (1984)

    Article  Google Scholar 

  14. E.A. Hernández, G. Sánchez-Reyna, J. Ancheyta, Comparison of mixing rules based on binary interaction parameters for calculating viscosity of crude oil blends. Fuel 249, 198–205 (2019). https://doi.org/10.1016/j.fuel.2019.03.098

    Article  Google Scholar 

  15. W.D. Monnery, W.Y. Svrcek, A.K. Mehrotra, Viscosity: a critical review of practical predictive and correlative methods. Can. J. Chem. Eng.. 73, 3–40 (1995). https://doi.org/10.1002/cjce.5450730103

    Article  Google Scholar 

  16. J.G. Kirkwood, F.P. Buff, M.S. Green, The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids. J. Chem. Phys. 17, 988–994 (1949). https://doi.org/10.1063/1.1747099

    Article  ADS  Google Scholar 

  17. S.A. Rice, H.L. Frisch, Some aspects of the statistical theory of transport. Ann. Rev. Phys. Chem. 11, 187–272 (1960)

    Article  ADS  Google Scholar 

  18. K.J. Okeson, R.L. Rowley, A four-parameter corresponding-states method for prediction of Newtonian, pure-component viscosity. Int. J. Thermophys. 12, 119–136 (1991). https://doi.org/10.1007/BF00506126

    Article  ADS  Google Scholar 

  19. K. Meier, A. Laesecke, S. Kabelac, A molecular dynamics simulation study of the self-diffusion coefficient and viscosity of the Lennard-Jones fluid. Int. J. Thermophys. 22, 161–173 (2001). https://doi.org/10.1023/A:1006715921252

    Article  Google Scholar 

  20. W. Cao, A. Fredenslund, P. Rasmussen, Statistical thermodynamic model for viscosity of pure liquids and liquid mixtures. Ind. Eng. Chem. Res. 31, 2603–2619 (1992)

    Article  Google Scholar 

  21. H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936). https://doi.org/10.1063/1.1749836

    Article  ADS  Google Scholar 

  22. D. Viswanath, T. Ghosh, D.H.L. Prasad, N.V.K. Dutt, K.Y. Rani, Viscosity of Liquids—Theory, Estimation, Experiment, and Data, 1st edn. (Springer, Dordrecht, 2007).

    MATH  Google Scholar 

  23. H. Eyring, J. Hirschfelder, The theory of the liquid state. J. Phys. Chem. 18, 249–257 (1936)

    Google Scholar 

  24. J.F. Ely, H.J. Hanley, The prediction of transport properties viscosity of fluid and mixtures. Ind. Eng. Chem. Fund. 20, 323 (1981)

    Article  Google Scholar 

  25. M.J. Assael, J.H. Dymond, M. Papadaki, P.M. Patterson, Correlation and prediction of dense fluid transport coefficients. III. n-alkane mixtures. Int. J. Thermophys. 13, 659 (1992)

    Article  ADS  Google Scholar 

  26. M.J. Assael, J.H. Dymond, P.M. Patterson, Correlation and prediction of dense fluid transport coefficients. V. Aromatic hydrocarbons. Int J Thermophys 13, 895–905 (1992). https://doi.org/10.1007/BF00503914

    Article  ADS  Google Scholar 

  27. K. Aasberg-Petersen, K. Knudsen, A. Fredenslund, Prediction of viscosities of hydrocarbon mixtures. Fluid Phase Equilib. 70, 293–308 (1991). https://doi.org/10.1016/0378-3812(91)85041-R

    Article  Google Scholar 

  28. ASTM 341-20 (2020). ASTM D341—20 Standard Practice for Viscosity-Temperature Equations and Charts for Liquid Petroleum or Hydrocarbon Products. 2020. https://doi.org/10.1520/D0341-20.2.

  29. A.L. Aboul-Seoud, H.M. Moharam, A generalized viscosity correlation for undefined petroleum fractions. Chem. Eng. J. 72, 253–256 (1999). https://doi.org/10.1016/S1385-8947(98)00131-4

    Article  Google Scholar 

  30. M.B. Amin, S.A. Beg, Generalized kinematic viscosity-temperature correlation for undefined petroleum fractions of ibp - 95°c to 455°c+ boiling ranges. Fuel Sci. Technol. Int. 12, 97–129 (1994). https://doi.org/10.1080/08843759408916168

    Article  Google Scholar 

  31. W. Fang, Q. Lei, Generalized correlation for predicting the kinematic viscosity of liquid petroleum fractions. Fluid Phase Equilib. 166, 125–139 (1999). https://doi.org/10.1016/S0378-3812(99)00298-8

    Article  Google Scholar 

  32. S. Santos, L. Fregolente, Simple and novel models to predict kinematic viscosity and pour point of heavy oil. Rio Oil & Gas Expo and Conference, Rio de Janeiro, RJ, Brazil, 2020 (20). https://doi.org/10.48072/2525-7579.rog.2020.303

  33. S.M. Santos, D.C. Nascimento, M.C. Costa, A.M.B. Neto, L.V. Fregolente, Flash point prediction: reviewing empirical models for hydrocarbons, petroleum fraction, biodiesel, and blends. Fuel 263, 116375 (2020). https://doi.org/10.1016/j.fuel.2019.116375

    Article  Google Scholar 

  34. I. Hussain, Generalized kinematic viscosity-temperature petroleum fractions. Chem. Eng. J. 4, 38 (1988)

    Google Scholar 

  35. A. Miadonye, N. Latour, V.R. Puttagunta, Correlation for viscosity and solvent mass fraction of bitumen-diluent mixtures. Pet. Sci. Technol. 18, 1–14 (2000). https://doi.org/10.1080/10916460008949828

    Article  Google Scholar 

  36. G. Centeno, G. Sánchez-Reyna, J. Ancheyta, J.A.D. Muñoz, N. Cardona, Testing various mixing rules for calculation of viscosity of petroleum blends. Fuel 90, 3561–3570 (2011). https://doi.org/10.1016/j.fuel.2011.02.028

    Article  Google Scholar 

  37. L.F. Ramírez-Verduzco, B.E. García-Flores, J.E. Rodríguez-Rodríguez, J.-J. Del Rayo, Prediction of the density and viscosity in biodiesel blends at various temperatures. Fuel 90, 1751–1761 (2011). https://doi.org/10.1016/j.fuel.2010.12.032

    Article  Google Scholar 

  38. K. Pramanik, Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew. Energy 28, 239–248 (2003). https://doi.org/10.1016/S0960-1481(02)00027-7

    Article  Google Scholar 

  39. C.E. Ejim, B.A. Fleck, A. Amirfazli, Analytical study for atomization of biodiesels and their blends in a typical injector: surface tension and viscosity effects. Fuel 86, 1534–1544 (2007). https://doi.org/10.1016/j.fuel.2006.11.006

    Article  Google Scholar 

  40. R.M. Joshi, M.J. Pegg, Flow properties of biodiesel fuel blends at low temperatures. Fuel 86, 143–151 (2007). https://doi.org/10.1016/j.fuel.2006.06.005

    Article  Google Scholar 

  41. I.P. Kanaveli, M. Atzemi, E. Lois, Predicting the viscosity of diesel/biodiesel blends. Fuel 199, 248–263 (2017). https://doi.org/10.1016/j.fuel.2017.02.077

    Article  Google Scholar 

  42. L.F. Ramírez Verduzco, Density and viscosity of biodiesel as a function of temperature: empirical models. Renew. Sustain. Energy Rev. 19, 652–665 (2013). https://doi.org/10.1016/j.rser.2012.11.022

    Article  Google Scholar 

  43. E.A. Hernández, G. Sánchez-Reyna, J. Ancheyta, Evaluation of mixing rules to predict viscosity of petrodiesel and biodiesel blends. Fuel 283, 118941 (2021). https://doi.org/10.1016/j.fuel.2020.118941

    Article  Google Scholar 

  44. American Petroleum Institute, Technical Data Book American Petroleum Institute (American Petroleum Institute, Washington, DC, 1997).

    Google Scholar 

  45. S.A. Beg, M.B. Amin, I. Hussain, Generalized kinematic viscosity-temperature correlation for undefined petroleum fractions. Chem. Eng. J. 38, 123–136 (1988). https://doi.org/10.1016/0300-9467(88)80068-6

    Article  Google Scholar 

  46. D.S. Viswanath, T.K. Ghosh, D.H.L. Prasad, N.K. Dutt, K.Y. Rani, Viscosity of Liquids: Theory, Estimation, Experiment, and Data (Springer, Berlin, 2007).

    MATH  Google Scholar 

  47. M. Chirinos, J. Gonzalez, I. Layrisse, Rheological properties of crude oils from the orinoco oil belt and their mixtures with diluents. Rev. Tech. Intevep. 32, 103–115 (1983)

    Google Scholar 

  48. R.S. Al-Maamari, G. Vakili-Nezhaad, M. Vatani, Experimental and modeling investigations of the viscosity of crude oil binary blends: new models based on the genetic algorithm method. J. Eng. Res. 12, 81 (2015)

    Google Scholar 

  49. L. Zhang, L. Zhang, Z. Xu, X. Guo, C. Xu, S. Zhao, Viscosity mixing rule and viscosityerature relationship estimation for oil sand bitumen vacuum residue and fractions. Energy Fuels 33, 206–214 (2019). https://doi.org/10.1021/acs.energyfuels.8b03511

    Article  Google Scholar 

  50. S. Arrhenius, Über die innere Reibung verdünnter wässeriger Lösungen. Z. Für Phys. Chem. (1887). https://doi.org/10.1515/zpch-1887-0133

    Article  Google Scholar 

  51. M.H. Rahmes, W.L. Nelson, Viscosity blending relationships of heavy petroleum oils. Anal. Chem. 20, 912–915 (1948). https://doi.org/10.1021/ac60022a012

    Article  Google Scholar 

  52. H. Jones, E. Bingham, The conductivity and viscosity of solutions of certain salts in mixtures of acetone with methyl alcohol, with ethyl alcohol and water. Am. Chem. J. 34, 481–554 (1905)

    Google Scholar 

  53. K. Nagasawa, T. Suzuki, R. Seto, M. Okada, Y. Yue, Mixing sauces: a viscosity blending model for shear thinning fluids. ACM Trans. Graph. 38, 1–17 (2019). https://doi.org/10.1145/3306346.3322947

    Article  Google Scholar 

  54. J. Kendal, K.P. Monroe, The viscosity of liquids. III. Ideal solutions of solids in liquids. 1. J. Am. Chem. Soc. 39, 1802–1086 (1917)

    Article  Google Scholar 

  55. C.T. Baird, Crude oil yields and product properties. 1222 Vezenaz, Geneva, Switzerland: Ch. De la Haute-Belotte 6, Cud Thomas Baird IV. 1981.

  56. M.R. Riazi, Characterization and Properties of Petroleum Fractions, 1st edn. (ASTM International, West Conshohocken, 2005).

    Book  Google Scholar 

  57. C. Cragoe, Changes in the viscosity of liquids with temperature, pressure and composition. Process World Pet. Congr. (1933), pp. 529–541.

  58. F.R. Pallares, The Viscosity and Thermal Conductivity of Heavy Oils and Solvents. Calgary, Doctoral Thesis University of Calgary. 2017. https://doi.org/10.11575/PRISM/28417.

  59. H. Nourozieh, M. Kariznovi, J. Abedi, Density and viscosity of athabasca bitumen, a condensate sample, and mixtures applicable for expanding-solvent steam-assisted-gravity-drainage and liquid-addition-to-steam-for-enhancing-recovery processes. Soc. Pet. Eng. 20, 937–956 (2017). https://doi.org/10.2118/185952-pa

    Article  Google Scholar 

  60. E. Lederer, Viscosity of mixtures with and without diluents. Proc. World Pet Congr. Lond. 2, 526 (1933)

    Google Scholar 

  61. Exxon Mobil. Assays available for download|ExxonMobil 2020. https://corporate.exxonmobil.com/Crude-oils/Crude-trading/Assays-available-for-download. Accessed 22 June 2020.

  62. B. Tesfa, R. Mishra, F. Gu, N. Powles, Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines. Renew. Energy 35, 2752–2760 (2010). https://doi.org/10.1016/j.renene.2010.04.026

    Article  Google Scholar 

  63. J.D. Mejía, N. Salgado, C.E. Orrego, Effect of blends of diesel and palm-castor biodiesels on viscosity, cloud point and flash point. Ind. Crops Prod. 43, 791–797 (2013). https://doi.org/10.1016/j.indcrop.2012.08.026

    Article  Google Scholar 

  64. R.A. Candeia, M.C.D. Silva, J.R. Carvalho Filho, M.G.A. Brasilino, T.C. Bicudo, I.M.G. Santos et al., Influence of soybean biodiesel content on basic properties of biodiesel-diesel blends. Fuel 88, 738–743 (2009). https://doi.org/10.1016/j.fuel.2008.10.015

    Article  Google Scholar 

  65. W. Yuan, A.C. Hansen, Q. Zhang, Z. Tan, Temperature-dependent kinematic viscosity of selected biodiesel fuels and blends with diesel fuel. J. Am. Oil Chem. Soc. 82, 195–199 (2005). https://doi.org/10.1007/s11746-005-5172-6

    Article  Google Scholar 

Download references

Acknowledgements

We thank Petrobras and ANP for providing experimental data and financial support. This study was developed within the scope of the Research, Development, and Innovation program for the petroleum sector, regulated by ANP, under the title “Análise integrada de indicadores de eficiência energética, SMS, econômicos e de processo através do contrato para Modernização e incorporação de novas funcionalidades ao software CalcProc—Suprimento de Macros para cálculo de Processamento de Óleo e Gás Calcproc (“SISTEMA”),” Project ANP Number 20792-8, with Petrobras as the project proponent. We also thank the financial support from Agência Nacional do Petróleo, Gás Natural e Biocombustíveis—ANP—by the ANP Human Resources Program for the Petroleum and Gas Sector—PRH-ANP Convênio FINEP/FUNCAMP, no 29.1, Ref. 5485.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shella M. Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information (DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, S.M., Maciel, M.R.W. & Fregolente, L.V. Kinematic Viscosity Prediction Guide: Reviewing and Evaluating Empirical Models for Diesel Fractions, and Biodiesel–Diesel Blends According to the Temperature and Feedstock. Int J Thermophys 42, 121 (2021). https://doi.org/10.1007/s10765-021-02868-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02868-z

Keywords

Navigation