Skip to main content
Log in

Normed Ideal Perturbation of Irreducible Operators in Semifinite Von Neumann Factors

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

An interesting result proved by Halmos in Hal (Michigan Mathematical Journal, 15, 215–223 (1968) is that the set of irreducible operators is dense in \({\mathcal {B}}({\mathcal {H}})\) in the sense of Hilbert-Schmidt approximation. In a von Neumann algebra \({\mathcal {M}}\) with separable predual, an operator \(a\in {\mathcal {M}}\) is said to be irreducible in \({\mathcal {M}}\) if \(W^*(a)\) is an irreducible subfactor of \({\mathcal {M}}\), i.e., \(W^*(a)'\cap {\mathcal {M}}={{\mathbb {C}}} \cdot I\). Let \(\Phi (\cdot )\) be a \(\Vert \cdot \Vert \)-dominating, unitarily invariant norm (see Definition 2.1). Many well-known norms are of this type such as the operator norm \(\Vert \cdot \Vert \) and the \(\max \{\Vert \cdot \Vert , \Vert \cdot \Vert _p\}\)-norm (for each \(p>1\)). In Theorem 3.1, we prove that in every semifinite factor \({\mathcal {M}}\) with separable predual, if the norm \(\Phi (\cdot )\) satisfies a natural condition introduced in (1.1), then irreducible operators are \(\Phi (\cdot )\)-norm dense in \({\mathcal {M}}\). In particular, the operator norm \(\Vert \cdot \Vert \) and the \(\max \{\Vert \cdot \Vert , \Vert \cdot \Vert _p\}\)-norm (for each \(p>1\)) naturally satisfy the condition in (1.1). This can be viewed as a (stronger) analogue of a theorem of Halmos in Hal (Michigan Mathematical Journal, 15, 215–223 (1968), proved with different techniques developed in semifinite, properly infinite factors with separable predual. It is natural to ask whether the condition in (1.1) is necessary for Theorem 3.1. We prove that the condition in (1.1) is not necessary for normal operators. In Theorem 4.1, for every \(\Vert \cdot \Vert \)-dominating, unitarily invariant norm \(\Phi (\cdot )\), we develop another method to prove that each normal operator in \({\mathcal {M}}\) is a sum of an irreducible operator in \({\mathcal {M}}\) and an arbitrarily small \(\Phi (\cdot )\)-norm perturbation. Particularly, the \(\Phi (\cdot )\)-norm can be the trace class norm \( \Vert \cdot \Vert _1\) on the set of trace class operators in \({\mathcal {B}}({\mathcal {H}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackadar, B: Operator algebras. Theory of \({{\rm C}}^{\ast }\)-algebras and von Neumann algebras. Encyclopaedia of Mathematical Sciences, 122. Operator Algebras and Non-commutative Geometry, III. Springer, Berlin, (2006)

  2. Breuer, M.: Fredholm theories in von Neumann algebras. I. Math. Ann. 178, 243–254 (1968)

    Article  MathSciNet  Google Scholar 

  3. Breuer, M.: Fredholm theories in von Neumann algebras II. Math. Ann. 180, 313–325 (1969)

    Article  MathSciNet  Google Scholar 

  4. Connes, A.: On the cohomology of operator algebras. J. Func. Anal. 28(2), 248–253 (1978)

    Article  MathSciNet  Google Scholar 

  5. Connes, A.: Feldman, Jacob, Weiss, Benjamin: An amenable equivalence relation is generated by a single transformation. Erg. Theory Dyn. Syst. 1(4), 431–450 (1981)

    Article  Google Scholar 

  6. Davidson, K.: \({{\rm C}}^{\ast }\)-algebras by example. Fields Institute Monographs, 6. American Mathematical Society, Providence, RI, (1996)

  7. Fang, J.: Hadwin, Don, Nordgren, Eric, Shen, Junhao: Tracial gauge norms on finite von Neumann algebras satisfying the weak Dixmier property. J. Funct. Anal. 255(1), 142–183 (2008)

    Article  MathSciNet  Google Scholar 

  8. Fang, J.: Shi, Rui, Wen, Shilin: On irreducible operators in factor von Neumann algebras. Linear Algebra Appl. 565, 239–243 (2019)

    Article  MathSciNet  Google Scholar 

  9. Gohberg, I., Kre\(\breve{\imath }\)n, M.: Introduction to the theory of linear non-selfadjoint operators in Hilbert space. (Russian), Izdat. “Nauka”, Moscow, (1965)

  10. Halmos, P.: Irreducible operators. Michigan Math J. 15, 215–223 (1968)

    Article  MathSciNet  Google Scholar 

  11. Kadison, R.: Diagonalizing matrices. Am. J. Math. 106(6), 1451–1468 (1984)

    Article  MathSciNet  Google Scholar 

  12. Kadison, R., Ringrose, J.: Fundamentals of the theory of operator algebras. Vol. I. Elementary theory. Reprint of the 1983 original. Graduate Studies in Mathematics, 15. American Mathematical Society, Providence, RI, (1997)

  13. Kadison, R., Ringrose, J.: Fundamentals of the theory of operator algebras. Vol. II. Advanced theory. Corrected reprint of the 1986 original. Graduate Studies in Mathematics, 16. American Mathematical Society, Providence, RI, (1997)

  14. Shige Toshi Kuroda: On a theorem of Weyl-von Neumann. Proc. Japan Acad. 34, 11–15 (1958)

    MathSciNet  MATH  Google Scholar 

  15. Li, Q., Shen, J., Shi, R: A generalization of the Voiculescu theorem for normal operators in semifinite von Neumann algebras. Adv. Math. 375, 107347, 55 pp (2020)

  16. Murray, F. J., Von Neumann, J.: On rings of operators. Ann. Math. (2) 37(1), 116–229 (1936)

  17. Murray, F. J., Von Neumann, J.: On rings of operators. IV. Ann. of Math. (2) 44(1), 716–808 (1943)

  18. von Neumann, J.: Charakterisierung des Spektrums eines Integraloperators. Actualits Sci. Indust. 229, Hermann, Paris, (1935)

  19. Pisier, G., Quanhua, X.: Non-commutative \(L^{p}\)-spaces, Handbook of the geometry of Banach spaces. North-Holland, Amsterdam 2, 1459–1517 (2003)

  20. Popa, S.: On a problem of R. V. Kadison on maximal abelian \(\ast \)-subalgebras in factors. Invent. Math. 65(2), 269–281 (1981/82)

  21. Popa, S.: Notes on Cartan subalgebras in type \({{\rm II}}_1\) factors. Math. Scand. 57(1), 171–188 (1985)

    Article  MathSciNet  Google Scholar 

  22. Radjavi, H., Rosenthal, P.: Shorter notes: the set of irreducible operators is dense. Proc. Am. Math. Soc. 21(1), 256 (1969)

    MATH  Google Scholar 

  23. Radjavi, H., Rosenthal, P.: Invariant Subspaces, 2nd edn. Dover Publications Inc, Mineola, NY (2003)

    MATH  Google Scholar 

  24. Rosenberg, J.: Amenability of crossed products of \({{\rm C}}^{\ast }\)-algebras. Comm. Math. Phys. 57(2), 187–191 (1977)

    Article  MathSciNet  Google Scholar 

  25. Schatten, R.: Norm-ideals of completely continuous operators. Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 27 Springer-Verlag, Berlin-Göttingen-Heidelberg (1960)

  26. Sinclair, A., Smith, R.: Finite von Neumann algebras and masas. London Mathematical Society Lecture Note Series, 351. Cambridge University Press, Cambridge, (2008)

  27. Suzuki, N.: Saitô, Teishirô: On the operators which generate continuous von Neumann algebras. Tohoku Math. J. 15(2), 277–280 (1963)

    Article  MathSciNet  Google Scholar 

  28. Voiculescu, D.: Some results on norm-ideal perturbations of Hilbert space operators. J. Oper. Theory 2(1), 3–37 (1979)

    MathSciNet  MATH  Google Scholar 

  29. Weyl, H.: Über beschränkte quadratische formen, deren differenz vollstetig ist. Rend. Circ. Mat. Palermo 27(1), 373–392 (1909)

    Article  Google Scholar 

  30. Wogen, W.: On generators for von Neumann algebras. Bull. Am. Math. Soc. 75, 95–99 (1969)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to the referee for many valuable suggestions on improving the writing of this paper. The short proof of Theorem 4.1 at the end of Section 4 is due to the referee, which simplifies the original proof with essential spectrum techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was partly supported by NSFC (Grant No.11871130).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R. Normed Ideal Perturbation of Irreducible Operators in Semifinite Von Neumann Factors. Integr. Equ. Oper. Theory 93, 34 (2021). https://doi.org/10.1007/s00020-021-02654-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-021-02654-4

Keywords

Mathematics Subject Classification

Navigation