Skip to main content
Log in

Impact speed dependency of the ductile failure threshold temperature for a plasticized polyvinylchloride

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

With the goal of ensuring the security of passengers for automotive industry, the present work addresses the temperature and impact speed envelope allowing ductile failure of plasticized PVC to be obtained. A database of about 250 test results has been constructed for various conditions at ten test temperatures, four impact speeds and two specimen geometries (with or without scoring). The desired ductile failure was characterized by the shape of the load versus deflection curve together with the fracture surface morphology obtained. The temperatures for obtaining ductile failure threshold (\(T_{\mathrm {dth}}\)) have been plotted as a function of the impact speeds for the two geometries. A gap of 20 \(^{\circ }\)C on the \(T_{\mathrm {dth}}\) was highlighted between the two geometries. Additionally, the impact strength of the plasticized PVC under study was estimated to be 0.25 kJ/m\(^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cox, K.R., Robertson, R.E.: Controlling Failure of Polymer Skin/Foam Bilaminate Sheets, SAE Technical Paper 2007-01-1216. SAE International, Warrendale (2007)

    Google Scholar 

  2. Brown, N., Ward, I.M.: The influence of morphology and molecular weight on ductile-brittle transitions in linear polyethylene. J. Mater. Sci. 18, 1405–1420 (1983)

    Article  ADS  Google Scholar 

  3. Corté, L.: Renforcement des polymères semi-cristallins, PhD thesis, ESPCI ParisTech (in French) (2006)

  4. Jang, B.Z., Uhlmann, D.R., Sande, J.B.V.: Ductile-brittle transition in polymers. J. Appl. Polym. Sci. 11, 3409–3420 (1984)

    Article  Google Scholar 

  5. Kambour, R.P., Bernier, G.A.: Craze formation yield stress and the so-called Ductile–Brittle transition in glassy polymers. Macromolecules 1(2), 190–191 (1968)

    Article  ADS  Google Scholar 

  6. Serenko, O.A., Goncharuk, G.P., Obolonkova, E.S., Bazhenov, S.L.: The brittle-ductile transition in rubber-filled polymers. Polym. Sci. Ser. A 48(3), 302–313 (2006)

    Article  Google Scholar 

  7. van Melick, H.G.H., Govaert, L.E., Meijer, H.E.H.: Prediction of brittle-to-ductile transitions in polystyrene. Polymer 44(2), 457–465 (2003)

    Article  Google Scholar 

  8. Collyer, A.A.: Rubber Toughened Engineering Plastics. Springer, Berlin (2012)

    Google Scholar 

  9. Laiarinandrasana, L., Nziakou, Y., Halary, J.L.: Fracture behavior of amorphous and semicrystalline blends of poly(vinylidene fluoride) and poly(methyl methacrylate). J. Polym. Sci. Part B: Polym. Phys. 50(24), 1740–1747 (2012)

    Article  ADS  Google Scholar 

  10. Challier, M., Besson, J., Laiarinandrasana, L., Piques, R.: Damage and fracture of polyvinylidene fluoride (PVDF) at 20\(^{\circ }\)C: experiments and modelling. Eng. Fract. Mech. 73, 79–90 (2006)

    Article  Google Scholar 

  11. Schiller, M., Additives, P.V.C.: Performance, Chemistry, Developments and Sustainability. Carl Hanser Verlag GmbH & Co. KG, München (2015)

    Book  Google Scholar 

  12. Wilkes, C.E., Summers, J.W., Daniels, C.A., Berard, M.T.: PVC Handbook. Hanser, Munich, Cincinnati (2005)

    Google Scholar 

  13. Ebewele, R.O.: Polymer Science and Technology. CRC Press, London (2000)

    Book  Google Scholar 

  14. Wypych, G.: PVC Degradation and Stabilization. Elsevier, New York (2020)

    Google Scholar 

  15. Tcharkhtchi, A.: Rotomoulage de pièces en matière thermoplastique. Techniques de l’ingénieur Plasturgie : fabrications de corps creux, de films et de fils, TIB149DUO. am3706 (2004). https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/plasturgie- fabrications-de-corps-creux-de-films-et-de-fils-42149210/rotomoulage-de-pieces-en-matiere- thermoplastique-am3706/

  16. Crawford, R.J., Throne, J.L.: 2-Rotational Molding Polymers. In: Crawford, R.J., Throne, J.L. (eds.) Rotational Molding Technology, pp. 19–68. William Andrew Publishing, Norwich (2002)

    Chapter  Google Scholar 

  17. ISO 6603-2:2000, Plastics—Determination of puncture impact behaviour of rigid plastics—Part 2: Instrumented impact testing. https://www.iso.org/fr/standard/25172.html

  18. Bruchhausen, M., Holmstrom, S., Lapetite, J.-M., Ripplinger, S.: On the determination of the ductile to brittle transition temperature from small punch tests on Grade 91 ferritic-martensitic steel. Int. J. Press. Vessels Pip. 155, 27–34 (2017)

    Article  Google Scholar 

  19. Lei, W.S., Yan, X.Q., Yao, M.: Determination of characteristic transition temperature of low-temperature brittleness in mild steel. Eng. Fract. Mech. 46, 571–581 (1993)

    Article  Google Scholar 

  20. Bohme, W., MacGillivray, H.J.: Experience with instrumented Charpy tests obtained by a DVM round-robin and further development. In: van Walle, E. (ed.) Evaluating Material Properties by Dynamic Testing ESIS 20, pp. 1–23. Mechanical Engineering Publications, London (1996)

    Google Scholar 

  21. Hale, G., Ramsteiner, F.: J-fracture toughness of polymers at slow speed. In: Moore, D.R., Pavan, A., Williams, J.G. (eds.) Mechanics testing methods for polymers, adhesives and composites, vol. 28, pp. 123–157. ESIS Publication, London (2001)

    Google Scholar 

  22. Bulloch, J.H.: A study concerning material fracture toughness and some small punch test data for low alloy steels. Eng. Fail. Anal. 11(4), 635–653 (2004)

    Article  Google Scholar 

  23. Williams, J.G.: \(K_C\) and \(G_C\) at low speed for polymers. In: Moore, D.R., Pavan, A., Williams, J.G. (eds.) Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites, vol. 28, pp. 159–175. ESIS Publication, London (2001)

    Chapter  Google Scholar 

  24. MacGillivray, H.J.: Fracture toughness of polymers at impact speed. In: Moore, D.R., Pavan, A., Williams, J.G. (eds.) Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites, vol. 28, pp. 159–175. ESIS Publication, London (2001)

    Chapter  Google Scholar 

  25. Bernard, C.A., Correia, J.P.M., Bahlouli, N., Ahzi, S.: Numerical simulation of plug-assisted thermoforming: application to polystyrene. Key Eng. Mater. 554–557, 1602–1610 (2013)

    Article  Google Scholar 

  26. Martin, P.J., Duncan, P.: The role of plug design in determining wall thickness distribution in thermoforming. Polym. Eng. Sci. 47, 804–813 (2007)

    Article  Google Scholar 

  27. Tanguy, B., Bouchet, C., Bugat, S., Besson, J.: Local approach to fracture based prediction of the \(\Delta T\) 56J and \(\Delta T K_{Ic}\)100 shifts due to irradiation for an A508 pressure vessel steel. Eng. Fract. Mech. 73, 191–206 (2006)

    Article  Google Scholar 

  28. Eyring, H.: Viscosity, plasticity and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)

    Article  ADS  Google Scholar 

  29. Laiarinandrasana, L., Besson, J., Lafarge, M., Hochstetter, G.: Temperature dependent mechanical behaviour of PVDF: experiments and numerical modelling. Int. J. Plast. 25, 130–1324 (2009)

    Article  Google Scholar 

  30. Boisot, G., Laiarinandrasana, L., Besson, J., Fond, C., Hochstetter, G.: Int. J. Solids Struct. 48, 264–2654 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Gabriel Dalloux and Grégory Martin (Nakan Company) for their fruitful discussions. Amandine Saintot (Catalyse Company) is acknowledged for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Laiarinandrasana.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertaux, C., Amouroux, N., Ovalle, C. et al. Impact speed dependency of the ductile failure threshold temperature for a plasticized polyvinylchloride. Continuum Mech. Thermodyn. 33, 2375–2390 (2021). https://doi.org/10.1007/s00161-021-01026-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01026-y

Keywords

Navigation