Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown

Abstract

Water-table drawdown across peatlands increases carbon dioxide (CO2) and reduces methane (CH4) emissions. The net climatic effect remains unclear. Based on global observations from 130 sites, we found a positive (warming) net climate effect of water-table drawdown. Using a machine-learning-based upscaling approach, we predict that peatland water-table drawdown driven by climate drying and human activities will increase CO2 emissions by 1.13 (95% interval: 0.88–1.50) Gt yr−1 and reduce CH4 by 0.26 (0.14–0.52) GtCO2-eq yr−1, resulting in a net increase of greenhouse gas of 0.86 (0.36–1.36) GtCO2-eq yr−1 by the end of the twenty-first century under the RCP8.5 climate scenario. This drops to 0.73 (0.2–1.2) GtCO2-eq yr−1 under RCP2.6. Our results point to an urgent need to preserve pristine and rehabilitate drained peatlands to decelerate the positive feedback among water-table drawdown, increased greenhouse gas emissions and climate warming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of water-table drawdown on peatland CO2 and CH4 fluxes.
Fig. 2: Responses of ∆CO2,WTD and ∆CH4,WTD to predictors.
Fig. 3: GHG changes in response to water-table drawdown by 2100.

Similar content being viewed by others

Data availability

Source datasets and global maps generated in this study are available at https://doi.org/10.6084/m9.figshare.13139906.v342.

Code availability

Calculations were conducted through Python 3.7.3, R 3.6.2 and ferret 6.72. Data processing code and code used to generate figures are provided through https://doi.org/10.6084/m9.figshare.13139906.v342.

References

  1. Yu, Z. C., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. https://doi.org/10.1029/2010gl043584 (2010).

  2. Frolking, S. et al. Peatlands in the Earth’s 21st century climate system. Environ. Rev. 19, 371–396 (2011).

    Article  CAS  Google Scholar 

  3. Myhre, G. et al. Anthropogenic and Natural Radiative Forcing (Cambridge Univ. Press, 2013).

    Google Scholar 

  4. Ise, T., Dunn, A. L., Wofsy, S. C. & Moorcroft, P. R. High sensitivity of peat decomposition to climate change through water-table feedback. Nat. Geosci. 1, 763–766 (2008).

    Article  CAS  Google Scholar 

  5. Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).

    Article  CAS  Google Scholar 

  6. Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).

    Article  CAS  Google Scholar 

  7. Nagano, T. et al. Subsidence and soil CO2 efflux in tropical peatland in southern Thailand under various water table and management conditions. Mires Peat 11, 6 (2013).

    Google Scholar 

  8. Erkens, G., van der Meulen, M. J. & Middelkoop, H. Double trouble: subsidence and CO2 respiration due to 1,000 years of Dutch coastal peatlands cultivation. Hydrol. J. 24, 551–568 (2016).

    CAS  Google Scholar 

  9. Swindles, G. T. et al. Widespread drying of European peatlands in recent centuries. Nat. Geosci. 12, 922–928 (2019).

  10. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (eds Hiraishi, T. et al.) (IPCC, 2014).

  11. Wilson, D. et al. Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat 17, 4 (2016).

    Google Scholar 

  12. Laiho, R. Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol. Biochem. 38, 2011–2024 (2006).

    Article  CAS  Google Scholar 

  13. Couwenberg, J., Dommain, R. & Joosten, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob. Change Biol. 16, 1715–1732 (2010).

    Article  Google Scholar 

  14. Laine, J. et al. Effect of water-level drawdown on global climatic warming: northern peatlands. Ambio 25, 179–184 (1996).

    Google Scholar 

  15. Prananto, J. A., Minasny, B., Comeau, L. P., Rudiyanto, R. & Grace, P. Drainage increases CO2 and N2O emissions from tropical peat soils. Global Change Biol. 26, 4583–4600 (2020).

  16. Turetsky, M. R. et al. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob. Change Biol. 20, 2183–2197 (2014).

    Article  Google Scholar 

  17. Jungkunst, H. F. & Fiedler, S. Latitudinal differentiated water table control of carbon dioxide, methane and nitrous oxide fluxes from hydromorphic soils: feedbacks to climate change. Glob. Change Biol. 13, 2668–2683 (2007).

    Article  Google Scholar 

  18. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  19. de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).

    Article  Google Scholar 

  20. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article  CAS  Google Scholar 

  21. Winton, R. S., Flanagan, N. & Richardson, C. J. Neotropical peatland methane emissions along a vegetation and biogeochemical gradient. PLoS ONE 12, e0187019 (2017).

  22. Teh, Y. A., Murphy, W. A., Berrio, J. C., Boom, A. & Page, S. E. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin. Biogeosciences 14, 3669–3683 (2017).

    Article  CAS  Google Scholar 

  23. Hodgkins, S. B. et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9, 3640 (2018).

  24. Leifeld, J., Wust-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945 (2019).

    CAS  Google Scholar 

  25. Dargie, G. C. et al. Age, extent and carbon storage of the central congo basin peatland complex. Nature 542, 86 (2017).

    Article  CAS  Google Scholar 

  26. Minasny, B. et al. Digital mapping of peatlands – a critical review. Earth Sci. Rev. 196, 102870 (2019).

  27. Miettinen, J., Shi, C. H. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 17, 2261–2270 (2011).

    Article  Google Scholar 

  28. Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907 (2018).

    Article  CAS  Google Scholar 

  29. Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 74 (2019).

    Article  Google Scholar 

  30. Melton, J. R. et al. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10, 753–788 (2013).

    Article  Google Scholar 

  31. Merbold, L. et al. Artificial drainage and associated carbon fluxes (CO2/CH4) in a tundra ecosystem. Glob. Change Biol. 15, 2599–2614 (2009).

    Article  Google Scholar 

  32. Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 1, 97–111 (2010).

    Article  Google Scholar 

  33. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. https://doi.org/10.18637/jss.v036.i03 (2010).

  34. van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).

    Article  Google Scholar 

  35. Kirby, K. N. & Gerlanc, D. BootES: an R package for bootstrap confidence intervals on effect sizes. Behav. Res. Methods 45, 905–927 (2013).

    Article  Google Scholar 

  36. Goldstein, A., Kapelner, A., Bleich, J. & Pitkin, E. Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation. J. Comput. Graphical Stat. 24, 44–65 (2015).

    Article  Google Scholar 

  37. de Graaf, I. E. M., Sutanudjaja, E. H., van Beek, L. P. H. & Bierkens, M. F. P. A high-resolution global-scale groundwater model. Hydrol. Earth Syst. Sci. 19, 823–837 (2015).

    Article  Google Scholar 

  38. Saunois, M. et al. The global methane budget 2000–2012. Earth Syst. Sci. Data 8, 697–751 (2016).

    Article  Google Scholar 

  39. Wania, R. et al. Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geosci Model Dev. 6, 617–641 (2013).

    Article  Google Scholar 

  40. Xu, J. R., Morris, P. J., Liu, J. G. & Holden, J. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).

    Article  Google Scholar 

  41. Coulston, J. W., Blinn, C. E., Thomas, V. A. & Wynne, R. H. Approximating prediction uncertainty for random forest regression models. Photogramm. Eng. Remote Sens. 82, 189–197 (2016).

    Article  Google Scholar 

  42. Huang, Y. et al. Supporting data for Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown. figshare. figshare https://doi.org/10.6084/m9.figshare.13139906 (2020).

Download references

Acknowledgements

Y.H., P.C., D.Z., C.Q. and D.S.G. received support from the European Research Council Synergy project SyG-2013-610028 IMBALANCE-P and Y.H., P.C., D.Z., C.Q., D.S.G., B.G. and D.M. from the ANR CLAND Convergence Institute (ANR-16-CONV-0003).

Author information

Authors and Affiliations

Authors

Contributions

Y.H., P.C. and L.Q. designed this study. Y.H., L.Q. and I.D.G. contributed the data. Y.H., P.C., Y.L., D.Z., D.M. and L.Q. discussed analysis methods. Y.H. conducted the analysis and drafted the manuscript. All authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to Yuanyuan Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Dan Charman, Connor Nolan, Debjani Sihi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–22, Tables 1–8 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Ciais, P., Luo, Y. et al. Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown. Nat. Clim. Chang. 11, 618–622 (2021). https://doi.org/10.1038/s41558-021-01059-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-021-01059-w

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology