skip to main content
research-article

Sparse Backbone and Optimal Distributed SINR Algorithms

Published:06 June 2021Publication History
Skip Abstract Section

Abstract

We develop randomized distributed algorithms for many of the most fundamental communication problems in wireless networks under the Signal to Interference and Noise Ratio (SINR) model of communication, including (multi-message) broadcast, local broadcast, coloring, Maximal Independent Set, and aggregation. The complexity of our algorithms is optimal up to polylogarithmic preprocessing time. It shows—contrary to expectation—that the plain vanilla SINR model is just as powerful and fast (modulo the preprocessing) as various extensions studied, including power control, carrier sense, collision detection, free acknowledgements, and geolocation knowledge. Central to these results is an efficient construction of a constant-density backbone structure over the network, which is of independent interest. This is achieved using an indirect sensing technique, where message non-reception is used to deduce information about relative node-distances.

References

  1. Noga Alon, Amotz Bar-Noy, Nathan Linial, and David Peleg. 1991. A lower bound for radio broadcast. J. Comput. Syst. Sci. 43, 2 (1991), 290–298. DOI:https://doi.org/10.1016/0022-0000(91)90015-WGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  2. Leonid Barenboim and David Peleg. 2015. Nearly optimal local broadcasting in the SINR model with feedback. In Proceedings of the 22nd International Colloquium on Structural Information and Communication Complexity (SIROCCO’15), Christian Scheideler (Ed.), Lecture Notes in Computer Science, Vol. 9439. Springer, 164–178. DOI:https://doi.org/10.1007/978-3-319-25258-2_12Google ScholarGoogle Scholar
  3. Marijke H. L. Bodlaender, Magnús M. Halldórsson, and Pradipta Mitra. 2013. Connectivity and aggregation in multihop wireless networks. In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC’13), Panagiota Fatourou and Gadi Taubenfeld (Eds.). ACM, 355–364. DOI:https://doi.org/10.1145/2484239.2484265Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Keren Censor-Hillel, Bernhard Haeupler, D. Ellis Hershkowitz, and Goran Zuzic. 2019. Erasure correction for noisy radio networks. In Proceedings of the 33rd International Symposium on Distributed Computing (DISC’19), Jukka Suomela (Ed.), LIPIcs,Vol. 146. Schloss Dagstuhl, Leibniz-Zentrum für Informatik, 10:1–10:17. DOI:https://doi.org/10.4230/LIPIcs.DISC.2019.10Google ScholarGoogle Scholar
  5. Imrich Chlamtac and Shay Kutten. 1985. On broadcasting in radio networks-problem analysis and protocol design. IEEE Trans. Commun. 33, 12 (1985), 1240–1246. DOI:https://doi.org/10.1109/TCOM.1985.1096245Google ScholarGoogle ScholarCross RefCross Ref
  6. Bogdan S. Chlebus and Shailesh Vaya. 2016. Distributed communication in bare-bones wireless networks. In Proceedings of the 17th International Conference on Distributed Computing and Networking. ACM, 1:1–1:10. DOI:https://doi.org/10.1145/2833312.2833454Google ScholarGoogle Scholar
  7. Sebastian Daum, Seth Gilbert, Fabian Kuhn, and Calvin C. Newport. 2013. Broadcast in the ad hoc SINR model. In Proceedings of the 27th International Symposium on Distributed Computing (DISC’13), Yehuda Afek (Ed.), Lecture Notes in Computer Science,Vol. 8205. Springer, 358–372. DOI:https://doi.org/10.1007/978-3-642-41527-2_25Google ScholarGoogle Scholar
  8. Bilel Derbel and El-Ghazali Talbi. 2010. Radio network distributed algorithms in the unknown neighborhood model. In Proceedings of the 11th International Conference on Distributed Computing and Networking (ICDCN’10), Krishna Kant, Sriram V. Pemmaraju, Krishna M. Sivalingam, and Jie Wu (Eds.), Lecture Notes in Computer Science, Vol. 5935. Springer, 155–166. DOI:https://doi.org/10.1007/978-3-642-11322-2_18Google ScholarGoogle ScholarCross RefCross Ref
  9. Benjamin Doerr. 2020. Probabilistic Tools for the Analysis of Randomized Optimization Heuristics. Springer International Publishing, Cham, 1–87. DOI:https://doi.org/10.1007/978-3-030-29414-4_1Google ScholarGoogle Scholar
  10. Jeremy T. Fineman, Seth Gilbert, Fabian Kuhn, and Calvin Newport. 2019. Contention resolution on a fading channel. Distrib. Comput. 32, 6 (2019), 517–533. DOI:https://doi.org/10.1007/s00446-018-0323-9Google ScholarGoogle ScholarCross RefCross Ref
  11. Fabian Fuchs and Roman Prutkin. 2015. Simple distributed Δ + 1 Coloring in the SINR Model. In Proceedings of the 22nd International Colloquium on Structural Information and Communication Complexity (SIROCCO’15), Christian Scheideler (Ed.), Lecture Notes in Computer Science, Vol. 9439. Springer, 149–163. DOI:https://doi.org/10.1007/978-3-319-25258-2_11Google ScholarGoogle Scholar
  12. Mohsen Ghaffari, Bernhard Haeupler, and Majid Khabbazian. 2015. Randomized broadcast in radio networks with collision detection. Distrib. Comput. 28, 6 (2015), 407–422. DOI:https://doi.org/10.1007/s00446-014-0230-7Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Mohsen Ghaffari, Bernhard Haeupler, Nancy A. Lynch, and Calvin C. Newport. 2012. Bounds on contention management in radio networks. In Proceedings of the 26th International Symposium on Distributed Computing (DISC’12), Marcos K. Aguilera (Ed.), Lecture Notes in Computer Science,Vol. 7611. Springer, 223–237. DOI:https://doi.org/10.1007/978-3-642-33651-5_16Google ScholarGoogle Scholar
  14. Wayne Goddard and Michael A. Henning. 2013. Independent domination in graphs: A survey and recent results. Discr. Math. 313, 7 (2013), 839–854. DOI:https://doi.org/10.1016/j.disc.2012.11.031Google ScholarGoogle ScholarCross RefCross Ref
  15. Olga Goussevskaia, Thomas Moscibroda, and Roger Wattenhofer. 2008. Local broadcasting in the physical interference model. In Proceedings of the DIALM-POMC Joint Workshop on Foundations of Mobile Computing, Michael Segal and Alexander Kesselman (Eds.). ACM, 35–44. DOI:https://doi.org/10.1145/1400863.1400873Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Piyush Gupta and P. R. Kumar. 2000. The capacity of wireless networks. IEEE Trans. Inf. Theory 46, 2 (2000), 388–404. DOI:https://doi.org/10.1109/18.825799Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Magnús M. Halldórsson, Stephan Holzer, and Nancy A. Lynch. 2015. A local broadcast layer for the SINR network model. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing (PODC’15), Chryssis Georgiou and Paul G. Spirakis (Eds.). ACM, 129–138. DOI:https://doi.org/10.1145/2767386.2767432Google ScholarGoogle Scholar
  18. Magnús M. Halldórsson, Fabian Kuhn, Nancy A. Lynch, and Calvin Newport. 2017. An efficient communication abstraction for dense wireless networks. In Proceedings of the 31st International Symposium on Distributed Computing (DISC’17), Andréa W. Richa (Ed.), LIPIcs,Vol. 91. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 25:1–25:16. DOI:https://doi.org/10.4230/LIPIcs.DISC.2017.25Google ScholarGoogle Scholar
  19. Magnús M. Halldórsson and Pradipta Mitra. 2012. Towards tight bounds for local broadcasting. In Proceedings of the 8th ACM International Workshop on Foundations of Mobile Computing (part of FOMC’12), Fabian Kuhn and Calvin C. Newport (Eds.). ACM, 2. DOI:https://doi.org/10.1145/2335470.2335472Google ScholarGoogle Scholar
  20. Magnús M. Halldórsson and Tigran Tonoyan. 2018. Leveraging indirect signaling for topology inference and fast broadcast. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, (PODC’18), Calvin Newport and Idit Keidar (Eds.). ACM, 85–93. DOI:https://doi.org/10.1145/3212734.3212766Google ScholarGoogle Scholar
  21. Magnús M. Halldórsson and Tigran Tonoyan. 2019. Plain SINR is enough! In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODC’19), Peter Robinson and Faith Ellen (Eds.). ACM, 127–136. DOI:https://doi.org/10.1145/3293611.3331602Google ScholarGoogle Scholar
  22. Dorit S. Hochbaum and David B. Shmoys. 1986. A unified approach to approximation algorithms for bottleneck problems. J. ACM 33, 3 (1986), 533–550. DOI:https://doi.org/10.1145/5925.5933Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Tomasz Jurdzinski and Dariusz R. Kowalski. 2012. Distributed backbone structure for algorithms in the SINR model of wireless networks. In Proceedings of the 26th International Symposium on Distributed Computing (DISC’12), Marcos K. Aguilera (Ed.), Lecture Notes in Computer Science,Vol. 7611. Springer, 106–120. DOI:https://doi.org/10.1007/978-3-642-33651-5_8Google ScholarGoogle ScholarCross RefCross Ref
  24. Tomasz Jurdzinski, Dariusz R. Kowalski, Michal Rózanski, and Grzegorz Stachowiak. 2013. Distributed randomized broadcasting in wireless networks under the SINR model. In Proceedings of the 27th International Symposium on Distributed Computing (DISC’13), Yehuda Afek (Ed.), Lecture Notes in Computer Science,Vol. 8205. Springer, 373–387. DOI:https://doi.org/10.1007/978-3-642-41527-2_26Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Tomasz Jurdzinski, Dariusz R. Kowalski, Michal Rózanski, and Grzegorz Stachowiak. 2014. On the impact of geometry on ad hoc communication in wireless networks. In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC’14), Magnús M. Halldórsson and Shlomi Dolev (Eds.). ACM, 357–366. DOI:https://doi.org/10.1145/2611462.2611487Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tomasz Jurdzinski, Dariusz R. Kowalski, Michal Rózanski, and Grzegorz Stachowiak. 2018. Deterministic digital clustering of wireless ad hoc networks. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing (PODC’18), Calvin Newport and Idit Keidar (Eds.). ACM, 105–114. DOI:https://doi.org/10.1145/3212734.3212752Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Tomasz Jurdzinski, Dariusz R. Kowalski, Michal Rozanski, and Grzegorz Stachowiak. 2020. Token traversal in ad hoc wireless networks via implicit carrier sensing. Theor. Comput. Sci. 811 (2020), 3–20. DOI:https://doi.org/10.1016/j.tcs.2019.09.016Special issue on Structural Information and Communication Complexit.Google ScholarGoogle ScholarCross RefCross Ref
  28. Tomasz Jurdzinski, Dariusz R. Kowalski, and Grzegorz Stachowiak. 2013. Distributed deterministic broadcasting in uniform-power ad hoc wireless networks. In Proceedings of the 19th International Symposium on Fundamentals of Computation Theory (FCT’13), Leszek Gasieniec and Frank Wolter (Eds.), Lecture Notes in Computer Science, Vol. 8070. Springer, 195–209. DOI:https://doi.org/10.1007/978-3-642-40164-0_20Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Eyal Kushilevitz and Yishay Mansour. 1998. An omega(D log (N/D)) lower bound for broadcast in radio networks. SIAM J. Comput. 27, 3 (1998), 702–712. DOI:https://doi.org/10.1137/S0097539794279109Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Thomas Moscibroda and Roger Wattenhofer. 2005. Maximal independent sets in radio networks. In Proceedings of the 24th Annual ACM Symposium on Principles of Distributed Computing (PODC’05), Marcos Kawazoe Aguilera and James Aspnes (Eds.). ACM, 148–157. DOI:https://doi.org/10.1145/1073814.1073842Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Thomas Moscibroda and Roger Wattenhofer. 2008. Coloring unstructured radio networks. Distrib. Comput. 21, 4 (2008), 271–284. DOI:https://doi.org/10.1007/s00446-008-0070-4Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Calvin C. Newport. 2014. Radio network lower bounds made easy. In Proceedings of the 28th International Symposium on Distributed Computing (DISC’14), Fabian Kuhn (Ed.), Lecture Notes in Computer Science,Vol. 8784. Springer, 258–272. DOI:https://doi.org/10.1007/978-3-662-45174-8_18Google ScholarGoogle ScholarCross RefCross Ref
  33. David Peleg. 2000. Distributed Computing: A Locality-sensitive Approach. Society for Industrial and Applied Mathematics, Philadelphia, PA.Google ScholarGoogle ScholarCross RefCross Ref
  34. Christian Scheideler, Andréa W. Richa, and Paolo Santi. 2008. An O(log n) dominating set protocol for wireless ad-hoc networks under the physical interference model. In Proceedings of the 9th ACM Interational Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’08), Xiaohua Jia, Ness B. Shroff, and Peng-Jun Wan (Eds.). ACM, 91–100. DOI:https://doi.org/10.1145/1374618.1374632Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Dongxiao Yu, Qiang-Sheng Hua, Yuexuan Wang, and Francis C. M. Lau. 2012. An O(log n) distributed approximation algorithm for local broadcasting in unstructured wireless networks. In Proceedings of the IEEE 8th International Conference on Distributed Computing in Sensor Systems (DCOSS’12). IEEE Computer Society, 132–139. DOI:https://doi.org/10.1109/DCOSS.2012.39Google ScholarGoogle Scholar
  36. Dongxiao Yu, Qiang-Sheng Hua, Yuexuan Wang, Haisheng Tan, and Francis C. M. Lau. 2012. Distributed multiple-message broadcast in wireless ad-hoc networks under the SINR model. In Proceedings of the 19th International Colloquium on Structural Information and Communication Complexity (SIROCCO’12), Guy Even and Magnús M. Halldórsson (Eds.), Lecture Notes in Computer Science,Vol. 7355. Springer, 111–122. DOI:https://doi.org/10.1007/978-3-642-31104-8_10Google ScholarGoogle ScholarCross RefCross Ref
  37. Dongxiao Yu, Qiang-Sheng Hua, Yuexuan Wang, Haisheng Tan, and Francis C. M. Lau. 2016. Distributed multiple-message broadcast in wireless ad hoc networks under the SINR model. Theor. Comput. Sci. 610 (2016), 182–191. DOI:https://doi.org/10.1016/j.tcs.2014.06.043Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Dongxiao Yu, Yuexuan Wang, Qiang-Sheng Hua, and Francis C. M. Lau. 2014. Distributed (Δ + 1)-coloring in the physical model. Theor. Comput. Sci. 553 (2014), 37–56. DOI:https://doi.org/10.1016/j.tcs.2014.05.016Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Dongxiao Yu, Yuexuan Wang, Tigran Tonoyan, and Magnús M. Halldórsson. 2017. Dynamic adaptation in wireless networks under comprehensive interference via carrier sense. In Proceedings of the 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS’17). IEEE Computer Society, 337–346. DOI:https://doi.org/10.1109/IPDPS.2017.78Google ScholarGoogle Scholar

Index Terms

  1. Sparse Backbone and Optimal Distributed SINR Algorithms

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Algorithms
          ACM Transactions on Algorithms  Volume 17, Issue 2
          April 2021
          235 pages
          ISSN:1549-6325
          EISSN:1549-6333
          DOI:10.1145/3461695
          • Editor:
          • Edith Cohen
          Issue’s Table of Contents

          Copyright © 2021 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 6 June 2021
          • Accepted: 1 February 2021
          • Revised: 1 November 2020
          • Received: 1 December 2019
          Published in talg Volume 17, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format