Skip to main content
Log in

A weighted and balanced FEM for singularly perturbed reaction-diffusion problems

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

A new finite element method is presented for a general class of singularly perturbed reaction-diffusion problems \(-\varepsilon ^2\varDelta u +bu=f\) posed on bounded domains \(\varOmega \subset \mathbb {R}^k\) for \(k\ge 1\), with the Dirichlet boundary condition \(u=0\) on \(\partial \varOmega\), where \(0 <\varepsilon \ll 1\). The method is shown to be quasioptimal (on arbitrary meshes and for arbitrary conforming finite element spaces) with respect to a weighted norm that is known to be balanced when one has a typical decomposition of the unknown solution into smooth and layer components. A robust (i.e., independent of \(\varepsilon\)) almost first-order error bound for a particular FEM comprising piecewise bilinears on a Shishkin mesh is proved in detail for the case where \(\varOmega\) is the unit square in \(\mathbb {R}^2\). Numerical results illustrate the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Adler, J., MacLachlan, S., Madden, N.: A first-order system Petrov–Galerkin discretization for a reaction–diffusion problem on a fitted mesh. IMA J. Numer. Anal. 36(3), 1281–1309 (2016). https://doi.org/10.1093/imanum/drv045

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, J.H, MacLachlan, S., Madden, N.: First-order system least squares finite-elements for singularly perturbed reaction–diffusion equations. In: Lirkov, I., Margenov, S. (eds.) Large-Scale Scientific Computing, pp. 3–14. Springer International Publishing, Cham (2020)

  3. Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics, B. G. Teubner, Stuttgart (1999)

    MATH  Google Scholar 

  4. Brayanov, I.A.: Numerical solution of a two-dimensional singularly perturbed reaction–diffusion problem with discontinuous coefficients. Appl. Math. Comput. 182(1), 631–643 (2006). https://doi.org/10.1016/j.amc.2006.04.027

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, Z., Ku, J.: A dual finite element method for a singularly perturbed reaction–diffusion problem. SIAM J. Numer. Anal. 58(3), 1654–1673 (2020). https://doi.org/10.1137/19M1264229

    Article  MathSciNet  MATH  Google Scholar 

  6. Clavero, C., Gracia, J.L., O’Riordan, E.: A parameter robust numerical method for a two dimensional reaction–diffusion problem. Math. Comput. 74(252), 1743–1758 (2005). https://doi.org/10.1090/S0025-5718-05-01762-X

    Article  MathSciNet  MATH  Google Scholar 

  7. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence, RI (2010). https://doi.org/10.1090/gsm/019

    Book  Google Scholar 

  8. de Falco, C., O’Riordan, E.: Interior layers in a reaction-diffusion equation with a discontinuous diffusion coefficient. Int. J. Numer. Anal. Model 7(3), 444–461 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Franz, S., Roos, H.G.: Error estimation in a balanced norm for a convection–diffusion problem with two different boundary layers. Calcolo 51(3), 423–440 (2014). https://doi.org/10.1007/s10092-013-0093-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, Springer, Berlin, reprint of the 1998 edn. (2001)

  11. Han, H., Kellogg, R.: Differentiability properties of solutions of the equation \(-\epsilon ^2\Delta u+ru=f(x, y)\) in a square. SIAM J. Math. Anal. 21, 394–408 (1990)

    Article  MathSciNet  Google Scholar 

  12. Heuer, N., Karkulik, M.: A robust DPG method for singularly perturbed reaction–diffusion problems. SIAM J. Numer. Anal. 55(3), 1218–1242 (2017). https://doi.org/10.1137/15M1041304

    Article  MathSciNet  MATH  Google Scholar 

  13. Kopteva, N.: Maximum norm a posteriori error estimate for a 2D singularly perturbed semilinear reaction–diffusion problem. SIAM J. Numer. Anal. 46(3), 1602–1618 (2008). https://doi.org/10.1137/060677616

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, R., Stynes, M.: A balanced finite element method for singularly perturbed reaction–diffusion problems. SIAM J. Numer. Anal. 50(5), 2729–2743 (2012). https://doi.org/10.1137/110837784

    Article  MathSciNet  MATH  Google Scholar 

  15. Linß, T.: Anisotropic meshes and streamline-diffusion stabilization for convection-diffusion problems. Commun. Nume,r Methods Eng. 21(10), 515–525 (2005). https://doi.org/10.1002/cnm.764

    Article  MathSciNet  MATH  Google Scholar 

  16. Linß, T.: Layer-Adapted Meshes for Reaction–Convection–Diffusion Problems. Lecture Notes in Mathematics, vol. 1985. Springer, Berlin (2010)

    Book  Google Scholar 

  17. Liu, F., Madden, N., Stynes, M., Zhou, A.: A two-scale sparse grid method for a singularly perturbed reaction–diffusion problem in two dimensions. IMA J. Numer. Anal. 29(4), 986–1007 (2009). https://doi.org/10.1093/imanum/drn048

    Article  MathSciNet  MATH  Google Scholar 

  18. Melenk, J.M., Xenophontos, C.: Robust exponential convergence of \(hp\)-FEM in balanced norms for singularly perturbed reaction–diffusion equations. Calcolo 53(1), 105–132 (2016). https://doi.org/10.1007/s10092-015-0139-y

    Article  MathSciNet  MATH  Google Scholar 

  19. Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T.T., Bercea, G.T., Markall, G.R., Kelly, P.H.J.: Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. 43(3):24:1–24:27 (2016) https://doi.org/10.1145/2998441. http://arxiv.org/abs/1501.01809

  20. Roos, H.G., Schopf, M.: Convergence and stability in balanced norms of finite element methods on Shishkin meshes for reaction–diffusion problems. Z. Angew. Math. Mech. 95(6), 551–565 (2015). https://doi.org/10.1002/zamm.201300226

    Article  MathSciNet  MATH  Google Scholar 

  21. Roos, HG., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer Series in Computational Mathematics, Convection–Diffusion–Reaction and Flow Problems vol 24, 2nd edn. Springer, Berlin (2008)

  22. Russell, S., Stynes, M.: Balanced-norm error estimates for sparse grid finite element methods applied to singularly perturbed reaction-diffusion problems. J. Numer. Math. 27(1), 37–55 (2019). https://doi.org/10.1515/jnma-2017-0079

    Article  MathSciNet  MATH  Google Scholar 

  23. Stynes, M., Stynes, D.: Convection-diffusion problems, Graduate Studies in Mathematics, vol 196. American Mathematical Society, Providence, RI; Atlantic Association for Research in the Mathematical Sciences (AARMS), Halifax, NS, An Introduction to Their Analysis and Numerical Solution (2018)

Download references

Funding

M. Stynes is supported in part by the National Natural Science Foundation of China under Grant NSAF-U1930402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stynes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madden, N., Stynes, M. A weighted and balanced FEM for singularly perturbed reaction-diffusion problems. Calcolo 58, 28 (2021). https://doi.org/10.1007/s10092-021-00421-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-021-00421-w

Keywords

Mathematics Subject Classification

Navigation