Skip to main content
Log in

Hierarchies, Networks, and Causality: The Applied Evolutionary Epistemological Approach

  • Article
  • Published:
Journal for General Philosophy of Science Aims and scope Submit manuscript

Abstract

Applied Evolutionary Epistemology is a scientific-philosophical theory that defines evolution as the set of phenomena whereby units evolve at levels of ontological hierarchies by mechanisms and processes. This theory also provides a methodology to study evolution, namely, studying evolution involves identifying the units that evolve, the levels at which they evolve, and the mechanisms and processes whereby they evolve. Identifying units and levels of evolution in turn requires the development of ontological hierarchy theories, and examining mechanisms and processes necessitates theorizing about causality. Together, hierarchy and causality theories explain how biorealities form and diversify with time. This paper analyzes how Applied EE redefines both hierarchy and causality theories in the light of the recent explosion of network approaches to causal reasoning associated with studies on reticulate and macroevolution. Causality theories have often been framed from within a rigid, ladder-like hierarchy theory where the rungs of the ladder represent the different levels, and the elements on the rungs represent the evolving units. Causality then is either defined reductionistically as an upward movement along the strands of a singular hierarchy, or holistically as a downward movement along that same hierarchy. Upward causation theories thereby analyze causal processes in time, i.e. over the course of natural history or phylogenetically, as Darwin and the founders of the Modern Synthesis intended. Downward causation theories analyze causal processes in space, ontogenetically or ecologically, as the current eco-evo-devo schools are evidencing. This work demonstrates how macroevolution and reticulate evolution theories add to the complexity by examining reticulate causal processes in space–time, and the interactional hierarchies that such studies bring forth introduce a new form of causation that is here called reticulate causation. Reticulate causation occurs between units and levels belonging to different as well as to the same ontological hierarchies. This article concludes that beyond recognizing the existence of multiple units, levels, and mechanisms or processes of evolution, also the existence of multiple kinds of evolutionary causation as well as the existence of multiple evolutionary hierarchies needs to be acknowledged. This furthermore implies that evolution is a pluralistic process divisible into different kinds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archie, E., & Tung, J. (2015). Social behavior and the microbiome. Current Opinion in Behavioral Sciences, 6, 28–34.

    Article  Google Scholar 

  • Baedke, J. (2020). Mechanisms in Evo-Devo. In L. Nuno de la Rosa, & G. Müller (Eds.), Evolutionary developmental biology. Cham: Springer.

  • Baldwin, J. (1896). A new factor in evolution. The American Naturalist, 30(354), 441–451.

    Article  Google Scholar 

  • Bechtel, W. (2011). Mechanism and biological explanation. Philosophy of Science, 78, 533–577.

    Article  Google Scholar 

  • Bechtel, W. (2019). Analyzing network models to make discoveries about biological mechanisms. British Journal for the Philosophy of Science, 70, 459–484.

    Article  Google Scholar 

  • Bechtel, W. (2020). Hierarchy and levels: Analyzing networks to study mechanisms in molecular biology. Philosophical Transactions of the Royal Society, B, 375, 20190320.

    Article  Google Scholar 

  • Bechtel, W., & Richardson, R. C. (1993). Discovering complexity. Princeton, NY: Princeton University Press.

    Google Scholar 

  • Beebee, H. (2015). Causes and laws: Philosophical aspects. In J. D. Wright (Ed.), International encyclopedia of the social & behavioral sciences (2nd Edn., pp. 266–273). Amsterdam: Elsevier.

  • Bickhard, M. H. (2002). Critical principles: On the negative side of rationality. New Ideas in Psychology, 20, 1–34.

    Article  Google Scholar 

  • Blackmore, S. (1999). The meme machine. Oxford: Oxford University Press.

    Google Scholar 

  • Braillard, P., & Malaterre, C. (Eds.). (2015). Explanation in biology. Dordrecht: Springer.

    Google Scholar 

  • Brandon, R. (1982). The levels of selection. In R. Brandon, & R. Burian (Eds.), (1984), Genes, organisms, populations: Controversies over the units of selection (pp. 133–139). Cambridge, MA: MIT Press.

  • Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review, 67(6), 380–400.

    Article  Google Scholar 

  • Campbell, D. T. (1974a). Evolutionary epistemology. In P. A. Schlipp (Ed.), The philosophy of Karl Popper (Vol. I, pp. 413–459). Chicago, IL: La Salle.

    Google Scholar 

  • Campbell, D. T. (1974b). Downward causation in hierarchically organized biological systems. In F. J. Ayala & T. Dobzhansky (Eds.), Studies in the philosophy of biology (pp. 179–186). London: Macmillan.

    Chapter  Google Scholar 

  • Campbell, D. T. (1990). Levels of organization, downward causation, and the selection-theory approach to evolutionary epistemology. In G. Greenberg & E. Tobach (Eds.), Theories of the evolution of knowing (pp. 1–17). Hillsdale, NJ: Lawrence Erlbaum Associates Inc.

    Google Scholar 

  • Cartwright, N. (2004). Causation: One word many things. Philosophy of Science, 71, 805–819.

    Article  Google Scholar 

  • Clarke, B., Gillies, D., Illari, P., Russo, F., & Williamson, J. (2014). Mechanisms and the evidence hierarchy. Topoi, 33(2), 339–360.

    Article  Google Scholar 

  • Craver, C. F., & Bechtel, W. (2007). Top-down causation without top-down causes. Biology & Philosophy, 22, 547–563.

    Article  Google Scholar 

  • Cziko, G. (1995). Without miracles. Universal selection theory and the second Darwinian revolution. Cambridge, MA: MIT Press.

    Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favored races in the struggle for life. London: John Murray.

    Google Scholar 

  • Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.

    Google Scholar 

  • Dawkins, R. (1982). Replicators and vehicles. In R. Brandon & R. Burian (Eds.), (1984), Genes, organisms, populations: Controversies over the units of selection (pp. 161–179). Cambridge, MA: MIT Press.

    Google Scholar 

  • Dawkins, R. (1983). Universal Darwinism. In D. L. Hull & M. Ruse (Eds.), The philosophy of biology (pp. 15–35). Oxford: Oxford University Press.

    Google Scholar 

  • Doolittle, F. W. (1999). Phylogenetic classification and the universal tree. Science, 284, 2124–2129.

    Article  Google Scholar 

  • Dupre, J. (2020). Life as process. Epistemology and Philosophy of Science, 57, 96–113.

    Article  Google Scholar 

  • Dyson, F. (1998). The evolution of science. In A. Fabion (Ed.), Evolution: Society, science and the universe (pp. 118–135). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Eldredge, N. (1985a). Unfinished synthesis: Biological hierarchies and modern evolutionary thought. New York, NY: Oxford University Press.

    Google Scholar 

  • Eldredge, N. (1985b). Time frames. New York, NY: Simon & Schuster.

    Google Scholar 

  • Eldredge, N. (1995). Reinventing Darwin. New York, NY: John Wiley and Sons.

    Google Scholar 

  • Eldredge, N., Thompson, J., Brakefield, P., Gavrilets, S., Jablonski, D., Jackson, J., Lenski, R., Lieberman, B., Mcpeek, M., & Miller, W. (2005). The dynamics of evolutionary stasis. Paleobiology, 31, 133–145.

    Article  Google Scholar 

  • Eldredge, N., & Salthe, S. (1984). Hierarchy and evolution. Oxford Surveys in Evolutionary Biology, 1, 184–208.

    Google Scholar 

  • Emmeche, C., Køppe, S., & Stjernfelt, F. (2000). Levels, emergence, and three versions of downward causation. In P. B. Andersen, C. Emmeche, N. Finnemann, & P. Christiansen (Eds.), Downward causation: Minds, bodies and matter (pp. 13–34). Aarhus: Aarhus University Press.

    Google Scholar 

  • Futuyma, D. (2010). Evolutionary constraint and ecological consequences. Evolution, 64(7), 1865–1884.

    Article  Google Scholar 

  • Ghiselin, M. (1974). A radical solution to the species problem. Systematic Zoology, 23(4), 536–544.

    Article  Google Scholar 

  • Glennan, S. (2017). The new mechanical philosophy. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Godfrey Smith, P. (2010). Causal pluralism. In H. Beebee, C. Hitchcock, & P. Menzies (Eds.), Oxford handbook of causation (pp. 326–337). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Gontier, N. (2007). Universal symbiogenesis: A genuine alternative to universal selectionist accounts. Symbiosis, 44, 167–181.

    Google Scholar 

  • Gontier, N. (2010). Evolutionary epistemology as a scientific method: A new look upon the units and levels of evolution debate. Theory in Biosciences, 129(2–3), 167–182.

    Article  Google Scholar 

  • Gontier, N. (2012). Applied Evolutionary Epistemology: A new methodology to enhance interdisciplinary research between the human and natural sciences. Kairos, Journal of Philosophy and Science, 4, 7–49.

    Google Scholar 

  • Gontier, N. (2015). Reticulate evolution everywhere. In N. Gontier (Ed.), Reticulate evolution: symbiogenesis, lateral gene transfer, hybridization and infectious heredity (pp. 1–40). Cham: Springer.

    Chapter  Google Scholar 

  • Gontier, N. (2016). Guest-editorial introduction: Converging evolutionary patterns in life and culture. Evolutionary Biology, 43(4), 427–445.

    Article  Google Scholar 

  • Gontier, N. (2017). What are the levels and mechanisms/processes of language evolution? Language Sciences, 63, 12–43.

    Article  Google Scholar 

  • Gontier, N. (2018a). What are the units of language evolution? Topoi, 37(2), 235–253.

    Article  Google Scholar 

  • Gontier, N. (2018b). On how epistemology and ontology converge through evolution: The applied evolutionary epistemological approach. In S. Wuppuluri & F. Doria (Eds.), The map and the territory, foreword by Sir Roger Penrose and afterword by Dagfinn Føllesdal (pp. 533–569). Cham: Springer.

    Google Scholar 

  • Gontier, N. (2018c). Cosmological and phenomenological transitions into how humans conceptualize and experience time. Time & Mind, 11(3), 325–335.

    Article  Google Scholar 

  • Gontier, N., & Bradie, M. (2017). Acquiring knowledge on species–specific biorealities: The applied evolutionary epistemological approach. In R. Joyce (Ed.), Routledge handbook of philosophy of biology (pp. 136–152). London: Routledge.

    Chapter  Google Scholar 

  • Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Belknap, Harvard University Press.

    Google Scholar 

  • Gould, S. J., & Eldredge, N. (1977). Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology, 3(2), 115–151.

    Article  Google Scholar 

  • Gould, S., & Eldredge, N. (1988). Species selection: Its range and power. Nature, 334, 19.

    Article  Google Scholar 

  • Grene, M. (1987). Hierarchies in biology. American Scientist, 75(5), 504–510.

    Google Scholar 

  • Griesemer, J. (2000). Development, culture and the units of inheritance. Philosophy of Science, 67, S348–S368.

    Article  Google Scholar 

  • Griffiths, P., & Gray, R. (1994). Developmental systems and evolutionary explanation. Journal of Philosophy, 91, 277–304.

    Article  Google Scholar 

  • Haeckel, E. (1866). Generelle Morphologie der Organismen. Berlin: Georg Reimer.

    Book  Google Scholar 

  • Hallgrímsson, B., & Hall, B. K. (2011). Epigenetics. Berkeley, CA: University of California Press.

    Book  Google Scholar 

  • Hubbell, S. (2001). The unified neutral theory of biodiversity. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Hull, D. L. (1980). Individuality and selection. Annual Review of Ecology and Systematics, II, 311–332.

    Article  Google Scholar 

  • Hull, D. L. (1981). Units of evolution. In R. Brandon & R. Burian (Eds.), (1984), Genes, organisms, populations (pp. 142–159). Cambridge, MA: MIT Press.

    Google Scholar 

  • Hull, D. L. (1988). Science as a process. Chicago, IL: The University of Chicago Press.

    Book  Google Scholar 

  • Illari, P. M., & Williamson, J. (2012). What is a mechanism? Thinking about mechanisms across the sciences. European Journal for Philosophy of Science, 2(1), 119–135.

    Article  Google Scholar 

  • Kauffman, S. (2019). A world beyond physics. New York, NY: Oxford University Press.

    Google Scholar 

  • Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Koerper, H., & Stickel, E. (1980). Cultural drift: A primary process of culture change. Journal of Anthropological Research, 36(4), 463–469.

    Article  Google Scholar 

  • Lewontin, R. (1970). The levels of selection. Annual Review of Ecological Systems, 1, 1–18.

    Article  Google Scholar 

  • Lewontin, R. (2000). The triple helix. Cambridge, MA: Belknap, Harvard University Press.

    Google Scholar 

  • Machamer, P., Darden, L., & Craver, C. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.

    Article  Google Scholar 

  • Margulis, L. (1991). Symbiogenesis and symbionticism. In L. Margulis & R. Fester (Eds.), Symbiosis as a source of evolutionary innovation (pp. 1–14). Cambridge, MA: MIT Press.

    Google Scholar 

  • Margulis, L. (1998). The symbiotic planet. Phoenix, AZ: Orion Books.

    Google Scholar 

  • Maynard Smith, J., & Szathmáry, E. (1995). The major transitions in evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Mayr, E. (1961). Cause and effect in biology. Science, 134(3489), 1501–1506.

    Article  Google Scholar 

  • Mayr, E. (1982). The growth of biological thought. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Menzies, P. (2012). The causal structure of mechanisms. Studies in History and Philosophy of Science Part C, 43, 796–805.

    Article  Google Scholar 

  • Noble, D. (2011). A theory of biological relativity: No privileged level of causation. Interface Focus, 2, 55–64.

    Article  Google Scholar 

  • Nunõ de la Rosa, L., & Etxeberria, A., et al. (2012). Pattern and process in evo-devo: Descriptions and explanations. In H. de Regt (Ed.), EPSA Philosophy of Science, Amsterdam 2009, The European Philosophy of Science Association Proceeding 1 (pp. 263–274). Dordrecht: Springer.

    Google Scholar 

  • Okasha, S. (2005). Multilevel selection and the major transitions in evolution. Philosophy of Biology, 72, 1013–1025.

    Google Scholar 

  • Okasha, S. (2012). Emergence, hierarchy and top-down causation in evolutionary biology. Interface Focus, 2, 49–54.

    Article  Google Scholar 

  • Oyama, S. (1985). The ontogeny of Information: Developmental systems and evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Paoletti, M. P., & Orilia, F. (Eds.). (2017). Philosophical and scientific perspectives on downward causation. London: Routledge.

    Google Scholar 

  • Pattee, H. (Ed.). (1973). Hierarchy theory: The challenge of complex systems. New York, NY: George Braziller.

    Google Scholar 

  • Pigliucci, M., & Müller, G. (Eds.). (2010). Evolution: The extended synthesis. Cambridge, MA: MIT Press.

    Google Scholar 

  • Polanyi, M. (1968). Life’s irreducible structure. Science, 160(3834), 1308–1312.

    Article  Google Scholar 

  • Portier, P. (1918). Les symbiotes. Paris: Masson et Cie.

    Google Scholar 

  • Prigogine, I. (1980). From being to becoming. New York: W. H. Freeman.

    Google Scholar 

  • Rieppel, O., & Grande, L. (1994). Summary and comments on systematic pattern and evolutionary process. In L. Grande & O. Rieppel (Eds.), Interpreting the hierarchy of nature (pp. 227–255). San Diego, CA: Academia Press.

    Google Scholar 

  • Rosenberg, A. (2020). Reduction and mechanism. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rosenberg, E., & Zilber-Rosenberg, I. (2013). The hologenome concept: Human, animal and plant microbiota. Dordrecht: Springer.

    Book  Google Scholar 

  • Russo, F., Wunsch, G., & Mouchart, M. (2019). Causality in the social sciences: A structural modelling framework. Quality & Quantity, 53(5), 2575–2588.

    Article  Google Scholar 

  • Salthe, S. N. (1985). Evolving hierarchical systems. New York, NY: Columbia University Press.

    Book  Google Scholar 

  • Sapp, J. (1994). Evolution by association: A history of symbiosis. New York, NY: Oxford University Press.

    Google Scholar 

  • Schank, J., Wimsatt, W. C. (1986). Generative entrenchment and evolution. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 2, 33–60.

  • Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS Biology, 14(8), e1002533.

    Article  Google Scholar 

  • Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(379–423), 623–656.

    Article  Google Scholar 

  • Shapiro, J. A. (2011). Evolution: A view from the 21st century. Upper Saddle River, NJ: FT Press.

    Google Scholar 

  • Shapiro, J. A. (2019). No genome is an island: Toward a 21st century agenda for evolution. Annual Review of the New York Academy of Sciences, 1447(1), 21–52.

    Article  Google Scholar 

  • Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106(6), 467–482.

    Google Scholar 

  • Stanley, S. M. (1975). A theory of evolution above the species level. Proceedings of the American Philosophical Society, 72, 646.

    Google Scholar 

  • Tëmkin, I., & Eldredge, N. (2015). Networks and hierarchies: Approaching complexity in evolutionary theory. In E. Serrelli & N. Gontier (Eds.), Macroevolution (pp. 183–226). Cham: Springer.

    Chapter  Google Scholar 

  • Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410–433.

    Article  Google Scholar 

  • Van Valen, L. (1973). A new evolutionary law. Evolutionary Theory, 1, 1–30.

    Google Scholar 

  • Von Bertalanffy, L. (1950). An outline of general systems theory. British Journal for the History of Science, 1(2), 134–162.

    Google Scholar 

  • Vrba, E., & Gould, S. J. (1986). The hierarchical expansion of sorting and selection: Sorting and selection cannot be equated. Paleobiology, 12, 217–228.

    Article  Google Scholar 

  • Wallin, I. E. (1927). Symbionticism and the origin of species. Baltimore, MD: Williams & Wilkins.

    Book  Google Scholar 

  • Wagner, G., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.

    Article  Google Scholar 

  • Watson, A. K., Habib, M., & Bapteste, E. (2020). Phylosystemics: Merging phylogenomics, systems biology, and ecology to study evolution. Trends in Microbiology, 28(3), 176–190.

    Article  Google Scholar 

  • Wiener, N. (1948). Cybernetics. Cambridge, MA: MIT Press.

    Google Scholar 

  • Williams, G. C. (1966). Adaptation and natural selection. Princeton, NY: Princeton University Press.

    Google Scholar 

Download references

Acknowledgements

Cordial thanks go out to Michael Bradie, Thomas Reydon, and two anonymous referees for their helpful comments and suggestions.

Funding

Written with the financial support of the Faculdade de Ciências da Universidade de Lisboa (Faculty of Science of the University of Lisbon) and FCT, Fundação para a Ciência e a Tecnologia (the Portuguese Foundation for Science and Technology), Grant ID DL57/2016/CP1479/CT0066 and Project IDs: UID/FIL/00678/2019 and UIDB/00678/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Gontier.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gontier, N. Hierarchies, Networks, and Causality: The Applied Evolutionary Epistemological Approach. J Gen Philos Sci 52, 313–334 (2021). https://doi.org/10.1007/s10838-021-09565-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10838-021-09565-3

Keywords

Navigation