Skip to main content
Log in

Bi-layer voter model: modeling intolerant/tolerant positions and bots in opinion dynamics

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The diffusion of opinions in social networks is a relevant process for adopting positions and attracting potential voters in political campaigns. Opinion polarization, bias, targeted diffusion, and the radicalization of postures are key elements for understanding the voting dynamics’ challenges. In particular, social bots are currently a new element that can have a pronounced effect on the formation of opinions during electoral processes by, for instance, creating fake accounts in social networks to manipulate elections. Here, we propose a voter model incorporating bots and radical or intolerant individuals in the decision-making process. The dynamics of the system occur in a multiplex network of interacting agents composed of two layers, one for the dynamics of opinions where agents choose between two possible alternatives, and the other for the tolerance dynamics, in which agents adopt one of the two tolerance levels. The tolerance accounts for the likelihood to change opinion in an interaction, with tolerant (intolerant) agents switching opinion with probability 1.0 (\(\gamma \le 1\)). We find that intolerance leads to a consensus of tolerant agents during an initial stage that scales as \(\tau ^+ \sim \gamma ^{-1} \ln N\), who then reach an opinion consensus during the second stage in a time that scales as \(\tau \sim N\), where N is the number of agents. Therefore, very intolerant agents (\(\gamma \ll 1\)) could considerably slow down dynamics towards the final consensus state. We also find that the inclusion of a fraction \(\sigma _{{\mathbb {B}}}^-\) of bots breaks the symmetry between both opinions, driving the system to a consensus of intolerant agents with the bots’ opinion. Thus, bots eventually impose their opinion to the entire population, in a time that scales as \(\tau _B^- \sim \gamma ^{-1}\) for \(\gamma \ll \sigma _{{\mathbb {B}}}^-\) and \(\tau _B^- \sim 1/\sigma _{{\mathbb {B}}}^-\) for \(\sigma _{{\mathbb {B}}}^- \ll \gamma \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Clifford, A. Sudbury, Biometrika 60, 581 (1973)

    Article  MathSciNet  Google Scholar 

  2. T.M. Liggett, Interacting particle systems (Springer, New York, 1975)

    MATH  Google Scholar 

  3. C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)

    Article  ADS  Google Scholar 

  4. F. Vazquez, P.L. Krapivsky, S. Redner, J. Phys. A Math. Gen. 36, L61–L68 (2003)

    Article  ADS  Google Scholar 

  5. F. Vazquez, S. Redner, J. Phys. A Math. Gen. 37, 8479 (2004)

    Article  ADS  Google Scholar 

  6. D. Volovik, M. Mobilia, S. Redner, Europhys. Lett. 85, 48003 (2009)

    Article  ADS  Google Scholar 

  7. F. Vazquez, E.S. Loscar, G. Baglietto, Phys. Rev. E 100, 042301 (2019)

    Article  ADS  Google Scholar 

  8. N. Masuda, N. Gibert, S. Redner, Phys. Rev. E 82, 010103 (2010)

    Article  ADS  Google Scholar 

  9. D.A. Vega-Oliveros, L. Da F. Costa, F.A. Rodrigues, J. Stat. Mech. Theory Exp. v.2, 023401 (2017)

    Article  Google Scholar 

  10. K. Suchecki, V.M. Eguíluz, M. San Miguel, EPL 69(2), 228 (2004)

  11. V. Sood, T. Antal, S. Redner, Phys. Rev. E 77, 041121 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. K. Suchecki, V.M. Eguíluz, M. San Miguel, Phys. Rev. E 72, 036132 (2005)

    Article  ADS  Google Scholar 

  13. V. Sood, S. Redner, Phys. Rev. Lett. 94, 178701 (2005)

    Article  ADS  Google Scholar 

  14. D.A. Vega-Oliveros, L. da Fontoura Costa, F.A. Rodrigues, Commun. Nonlinear Sci. Numer. Simul. 83, 105094 (2020)

    Article  MathSciNet  Google Scholar 

  15. F. Vazquez, V.M. Eguíluz, N. J. Phys. 10, 063011 (2008)

    Article  Google Scholar 

  16. F. Vazquez, V.M. Eguíluz, M. San Miguel, Phys. Rev. Lett. 100, 108702 (2008)

    Article  ADS  Google Scholar 

  17. G. Demirel, F. Vazquez, G.A. Böhme, T. Gross, Phys. D 267, 68–80 (2014)

    Article  MathSciNet  Google Scholar 

  18. S. Galam, Phys. A Stat. Mech. Appl. 333, 49–55 (2004)

    Article  MathSciNet  Google Scholar 

  19. G. Serge, F. Jacobs, Phys. A. Stat. Mech. Appl. 381, 366–376 (2007)

    Article  Google Scholar 

  20. M. Mobilia, A. Petersen, S. Redner, J. Stat. Mech. Theory Exp. 2007, P08029 (2007)

    Article  Google Scholar 

  21. G. De Marzo, A. Zaccaria, C. Castellano, Phys. Rev. Res. 2, 043117 (2020)

    Article  Google Scholar 

  22. C.E. La Rocca, L.A. Braunstein, F. Vazquez, Europhys. Lett. 106, 40004 (2014)

    Article  Google Scholar 

  23. F. Velásquez-Rojas, F. Vazquez, J. Stat. Mech. Theor. Exp. 2018, 043403 (2018)

    Article  Google Scholar 

  24. F. Vazquez, N. Saintier, J.P. Pinasco, Phys. Rev. E 101, 012101 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. N. Saintier, J. Pablo Pinasco, F. Vazquez, Chaos 30, 063146 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Volovik, S. Redner, J. Stat. Mech. Theory Exp. 2012, P04003 (2012)

    Article  Google Scholar 

  27. E. Colleoni, A. Rozza, A. Arvidsson, Echo chamber or public sphere? Predicting political orientation and measuring political homophily in twitter using big data. J. Commun. 64(2), 317–332 (2014)

    Article  Google Scholar 

  28. O. Boichak, S. Jackson, J. Hemsley, S. Tanupabrungsun, Automated diffusion? Bots and their influence during the 2016 US presidential election. In: International conference on information (Springer, 2018), pp. 17–26

  29. A. Duh, M. Slak Rupnik, D. Korošak, Collective behavior of social bots is encoded in their temporal twitter activity. Big Data 6(2), 113–123 (2018)

    Article  Google Scholar 

  30. M. Stella, M. Cristoforetti, M. De Domenico, Influence of augmented humans in online interactions during voting events. PLoS One 14(5), e0214210 (2019)

    Article  Google Scholar 

  31. J. Pastor-Galindo, M. Zago, P. Nespoli, S.L. Bernal, A.H. Celdrán, M.G. Pérez, J.A. Ruipérez-Valiente, G.M. Pérez, F.G. Mármol, Spotting political social bots in twitter: a use case of the 2019 Spanish general election. arXiv preprint arXiv:2004.00931 (2020)

  32. D.M.J. Lazer, M.A. Baum, Y. Benkler, A.J. Berinsky, K.M. Greenhill, F. Menczer, M.J. Metzger, B. Nyhan, G. Pennycook, D. Rothschild et al., The science of fake news. Science 359(6380), 1094–1096 (2018)

  33. F. Velásquez-Rojas, F. Vazquez, Phys. Rev. E 95, 052315 (2017)

  34. P.C.V. da Silva, F. Velásquez-Rojas, C. Connaughton, F. Vazquez, Y. Moreno, F.A. Rodrigues, Phys. Rev. E 100, 032313 (2019)

  35. F. Velásquez-Rojas, P. Cesar Ventura, C. Connaughton, Y. Moreno, F.A. Rodrigues, F. Vazquez, Phys. Rev. E 102, 022312 (2020)

  36. W. Wang, M. Tang, H. Yang, Y. Do, Y.-C. Lai, G. Lee, Sci. Rep. 4, 5097 (2014)

    Article  Google Scholar 

  37. C. Granell, S. Gómez, A. Arenas, Phys. Rev. E 90, 012808 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under Grant No.: 2015/50122-0 and the German Research Council (DFG-GRTK) Grant No.: 1740/2. D.A.V.O acknowledges the computational resources from the Center for Mathematical Sciences Applied to Industry (CeMEAI) under Grant 2013/07375-0, and FAPESP Grants 2016/23698-1, 2018/24260-5, and 2019/26283-5. F.V. acknowledges financial support from Agencia Nacional de Promoción Cienítfica y Tecnológica (Grant No. PICT 2016 Nro 201-0215). H.L.C.G. was funded by the research scholarship PCI-INPE, process 301113/2020-3. We thank Prof. Dr. Alessandro Vespignani, Dr. Dario Mazzilli, and PhD(c) Daniele Notarmuzi for useful comments and intellectual discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helder L. C. Grande.

Appendix A: complement of the explicit transitions rules

Appendix A: complement of the explicit transitions rules

In this section, we explicitly write all transitions between opinion and tolerance states of agents in the model without bots (Table 1) and with bots (Table 2). The notations \(A^+, A^-, B^+\) and \(B^-\) correspond to states of agents with opinion and tolerance A and \(+\), A and −, B and \(+\), and B and −, respectively. In a single time step \(\Delta t = 1/N\) of the dynamics, one node is chosen at random. Then, this node copies the tolerance of a random neighbor in the ±-layer, and the opinion of a random neighbor in the AB-layer. In Tables 1 and 2, the states on the left and right of a given pair correspond, respectively, to the focal agent—who changes state—and the random neighbor on the corresponding layer. Only situations that lead to a state change are included in the tables.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega-Oliveros, D.A., Grande, H.L.C., Iannelli, F. et al. Bi-layer voter model: modeling intolerant/tolerant positions and bots in opinion dynamics. Eur. Phys. J. Spec. Top. 230, 2875–2886 (2021). https://doi.org/10.1140/epjs/s11734-021-00151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00151-8

Navigation