Skip to main content

Advertisement

Log in

Biodegradable packaging materials

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Packaging of food is required to ensure the safe handling and distribution of processed food products from the spot of production to the boundary consumer. Polymers and bioactive compounds are used as surrogates for the production of biodegradable food wrappings to ameliorate the nutritional value and improve the shelf life of highly putrescible food products. Moreover, they are environmentally friendly. The biodegradation process can be affected by the polymer's nature and environmental conditions such as light, temperature and humidity. This review work aims to bring out the different kinds of packing materials such as natural biopolymers (polysaccharides and proteins), synthetic biopolymers (aliphatic polyesters) and bionanocomposites. The sources of different biopolymers, production and its applications in the broad spectrum of food packaging are discussed. The review also scrutinizes some of the examples of biodegradable polymers. Besides, few discussions about the use of antimicrobial and antioxidant agents that are used for packaging are also covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kirwan MJ, Strawbridge JW (2003) Plastics in food packaging. In: Coles R, McDowell D, Kirwan MJ (eds) Food packaging technology. Blackwell/CRC Press, Boca Raton, Florida, pp 174–240

    Google Scholar 

  2. Marsh K, Bugusu B (2007) Food packaging-roles, materials and environmental issues. J Food Sci 72:R39–R55. https://doi.org/10.1111/j.1750-3841.2007.00301.x

    Article  CAS  PubMed  Google Scholar 

  3. Atares L, Chiralt A (2016) Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci Technol 48:51–62. https://doi.org/10.1016/j.tifs.2015.12.001

    Article  CAS  Google Scholar 

  4. Freitas F, Alves VD, Coelhoso I, Reis MAM (2013) Production and food applications of microbial biopolymers. CRC Press, In Engineering Aspects of Food Biotechnology, Boca Raton, FL

    Book  Google Scholar 

  5. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3(2002):113–126. https://doi.org/10.1016/S1466-8564(02)00012-7

    Article  CAS  Google Scholar 

  6. Costa C, Conte A, Buonocore GG, Lavorgna M, Nobile MA (2012) Calcium-alginate coating loaded with silver-montmorillonite. nanoparticles to prolong the shelf-life of fresh-cut carrots. Food Res Int 48:164–169. https://doi.org/10.1016/j.foodres.2012.03.001

    Article  CAS  Google Scholar 

  7. Bastarrachea L, Dhawan S, Sablani SS (2011) Engineering properties of polymeric-based antimicrobial films for food packaging: a review. Food Eng Rev 3:79–93. https://doi.org/10.1007/s12393-011-9034-8

    Article  Google Scholar 

  8. Credou J, Berthelot TJ (2014) Cellulose: From biocompatible to bioactive material. Mater Chem B 2:4767–4788. https://doi.org/10.1039/c4tb00431k

    Article  CAS  Google Scholar 

  9. Kadam SU, Pankaj SK, Tiwari BK, Cullen PJ, O’Donnell CP (2015) Development of biopolymer-based gelatin and casein films incorporating brown seaweed Ascophyllum nodosum extract. Food Packag Shelf Life 6:68–74. https://doi.org/10.1016/j.fpsl.2015.09.003

    Article  Google Scholar 

  10. Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2015) Bio-based composite edible films containing Origanum vulgare L. essential oil. Ind Crop Prod 67:403–413. https://doi.org/10.1016/j.indcrop.2015.01.062

    Article  CAS  Google Scholar 

  11. Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44:223–237. https://doi.org/10.1080/10408690490464276

    Article  CAS  PubMed  Google Scholar 

  12. Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trend Food Sci Technol 14:71–78. https://doi.org/10.1016/S0924-2244(02)00280-7

    Article  CAS  Google Scholar 

  13. Guilbert S, Cuq B, Gontard N (1997) Recent innovations in edible and/or biodegradable packaging materials. Food Addit Contam 14:741–751. https://doi.org/10.1080/02652039709374585

    Article  CAS  PubMed  Google Scholar 

  14. Labuza TP, Breene WMJ (1989) Application of active packaging for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods. Food Process Pres 13:1–69

    Article  CAS  Google Scholar 

  15. Moniri M, Moghaddam AB, Azizi S, Rahim RA, Ariff AB, Saad WZ, Mohamad NM, R, (2017) Production and status of bacterial cellulose in biomedical engineering. Nanomaterials (Basel) 7(9):257. https://doi.org/10.3390/nano7090257

    Article  CAS  Google Scholar 

  16. Duan J, Reddy KO, Ashok B, Cai J, Zhang L, Rajulu AVJ (2016) Effects of spent tea leaf powder on the properties and functions of cellulose green composite films. Environ Chem Eng. 4:440–448

    Article  CAS  Google Scholar 

  17. Cruz-Romero M, Kerry JP (2010) Crop-based biodegradable packaging and its environmental implications. cab Rev. Pers Agric Veterinary Sci Nutr Nat Resour 3:1–25. https://doi.org/10.1079/PAVSNNR20083074

    Article  CAS  Google Scholar 

  18. Thakur VK, Thakur MK (2016) Handbook of sustainable polymers: processing and applications. Jenny Stanford, New York

    Book  Google Scholar 

  19. Cazon P, Vazquez M (2021) Bacterial cellulose as a biodegradable food packaging material: a review. Food Hydrocoll 113:1–9. https://doi.org/10.1016/j.foodhyd.2020.106530

    Article  CAS  Google Scholar 

  20. Hasan M, Lai TK, Gopakumar DA, Jawaid M, Owolabi FAT, Mistar EM, Alfatah T, Noriman NZ, Haafiz MKM, Abdul Khalil HPS (2019) Micro crystalline bamboo cellulose based seaweed biodegradable composite films for sustainable packaging material. J Polym Environ 27:1602–1612. https://doi.org/10.1007/s10924-019-01457-4

    Article  CAS  Google Scholar 

  21. Arvanitoyannis, (2008) The use of chitin and chitosan for food packaging applications. Environ Compat Food Packag 6:137–158. https://doi.org/10.1533/9781845694784.1.137

    Article  Google Scholar 

  22. Srinivasa PC, Baskaran R, Ramesh MN, Prashanth KH, Tharanathan RN (2002) Storage studies of Mango packed using biodegradable chitosan film. Eur Food Res Technol 215:504–508. https://doi.org/10.1007/s00217-002-0591-1

    Article  CAS  Google Scholar 

  23. Biswas M, Ray SS (2001) Recent progress in synthesis and evaluation of polymer-montmorillonitenano composites. New polymerization techniques and synthetic methodologies. Advances in Polymer Science, Springer, Berlin, Heidelberg, pp 167–221

    Chapter  Google Scholar 

  24. Cardoso GP, Dutra MP, Fontes PR, Ramos ALS, Gomide LAM, Ramos EM (2016) Selection of a chitosan gelatin-based edible coating for color preservation of beef in retail display. Meat Sci 114:85–94. https://doi.org/10.1016/j.meatsci.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  25. Talbott LD, Ray PM (1992) Molecular size and separability features of pea cell wall polysaccharides: implications for models of primary wall structure. Plant Physiology Plant Physiol 92:357–368. https://doi.org/10.1104/pp.98.1.357

    Article  Google Scholar 

  26. Zhan D, Janssen P, Mort AJ (1998) Scarcity or complete lack of single rhamnose residues interspersed within the homogalacturonan regions of citrus pectin. Carbohydr Res 308:373–380. https://doi.org/10.1016/s0008-6215(98)00096-2

    Article  CAS  PubMed  Google Scholar 

  27. Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: Structure, biosynthesis and oligogalacturonide-related signaling. Phytochemistry 57:929–967. https://doi.org/10.1016/s0031-9422(01)00113-3

    Article  CAS  PubMed  Google Scholar 

  28. O’Neill MA, York WS (2003) The composition and structure of plant primary cell walls. In: Rose JKC (ed) The plant cell wall. Blackwell/CRC Press, Boca Raton, Florida, pp 1–54

    Google Scholar 

  29. Levigne S, Ralet MC, Thibault JF (2002) Characterization of pectins extracted from fresh sugar beet under different conditions using an experimental design. Carbohydr Polym 49:145–153. https://doi.org/10.1016/S0144-8617(01)00314-9

    Article  CAS  Google Scholar 

  30. Monsoor MA, Proctor A (2001) Preparation and functional properties of soy hull pectin. J Am Oil Chem Soc 78:709–713. https://doi.org/10.1007/s11746-001-0330-z

    Article  CAS  Google Scholar 

  31. HappiEmaga T, Ronkart SN, Robert C, Wathelet B, Paquot M (2008) Characterization of pectins extracted from banana peels (Musa AAA) under different conditions using an experimental design. Food Chem 108:463–471. https://doi.org/10.1016/j.foodchem.2007.10.078

    Article  CAS  Google Scholar 

  32. Ciolacu L, Nicolau AI, Hoorfar J (2014) Global safety of fresh produce. A handbook of best practice, innovative commercial solutions and case studies. Woodhead Publishing Limited, Sawston, United Kingdom

    Google Scholar 

  33. Maftoonazad N, Ramaswamy HS (2008) Effect of pectin-based coating on the kinetics of quality change associated with stored avocados. J Food Process Preserv 32:621–643. https://doi.org/10.1111/j.1745-4549.2008.00203.x

    Article  CAS  Google Scholar 

  34. Menezes J, Athmaselvi KA (2016) Study on effect of pectin based edible coating on the shelf life of sapota fruits. Biosci Biotech Res Asia 13:1195–1199. https://doi.org/10.13005/bbra/2152

    Article  Google Scholar 

  35. Espitia PJP, Du WX, Avena-Bustillos RJ, Soares NFF, McHugh TH (2014) Edible films from pectin: physical-mechanical and antimicrobial properties- a review. Food Hydrocoll 35:287–296. https://doi.org/10.1016/j.foodhyd.2013.06.005

    Article  CAS  Google Scholar 

  36. Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposites -2.Mechanical behaviour. Macromolecules 34:2921–2931. https://doi.org/10.1021/ma001555h

    Article  CAS  Google Scholar 

  37. Nascimento TA, Calado V, Carvalho CWP (2012) Development and characterisation of flexible film based on starch and passion fruit mesocarp flour with nanoparticles. Food Res Int 49:588–595. https://doi.org/10.1016/j.foodres.2012.07.051

    Article  CAS  Google Scholar 

  38. Rajakumari M, Muthu selvi V, (2018) Production of starch based biodegradable plastic from jackfruit seed flour (Artocarpus heterophyllus). Int J Curr Adv Res 7:9382–9385. https://doi.org/10.24327/ijcar.2018.9385.1549

    Article  Google Scholar 

  39. Sen C, Das M (2016) Self-supporting-film from starch, poly(vinyl alcohol), and glutaraldehyde: Optimization of composition using response surface methodology. J Appl Polym Sci. https://doi.org/10.1002/app.44436

    Article  Google Scholar 

  40. Vu CHT, Won K (2013) Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. Food Chem 140:52–56. https://doi.org/10.1016/j.foodchem.2013.02.056

    Article  CAS  PubMed  Google Scholar 

  41. Stokke BT, Draget KI, Smidsrod O, Yuguch Y, Urakawa H, Kajiwara K (2000) Small-angle X-ray scattering and rheological characterization of alginate gels. 1. Calcium alginate gels Macromolecules 33:1853–1863. https://doi.org/10.1021/ma991559q

    Article  CAS  Google Scholar 

  42. Cottrell IW, Kovacs P (1980) Alginates. In: Davidson RL (ed) Handbook of water-soluble gums and resins. McGraw-Hill, New York

    Google Scholar 

  43. Littlecott GW (1982) Food gels-The role of alginates. Food Technol Aust. 34:412–418

    CAS  Google Scholar 

  44. Sime WJ (1990) Alginates. In: Harris P (ed) Food gels. Springer, Dordrecht, pp 53–78

    Chapter  Google Scholar 

  45. Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles their incorporation into sodium alginate films for vegetable fruit preservation. J Agric Food Chem 57:6246–6252. https://doi.org/10.1021/jf900337h

    Article  CAS  Google Scholar 

  46. Maizura M, Fazilah A, Norziah MH, Karim AA (2007) Antibacterial activity and mechanical properties of partially hydrolysed sago starch-alginate edible film containing lemongrass oil. J Food Sci 72:C324–C330. https://doi.org/10.1111/j.1750-3841.2007.00427.x

    Article  CAS  PubMed  Google Scholar 

  47. Gu CH, Wang JJ, Yu Y, Sun H, Shuai N, Wei B (2013) Biodegradable multilayer barrier films based on alginate/polyethyleneimine and biaxially oriented poly (lactic acid). Carbohydr Polym 92:1579–1585. https://doi.org/10.1016/j.carbpol.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  48. Cutter CN, Siragusa GR (1996) Reduction of Brochothrixthermosphacta on beef surfaces following immobilization of nisin in calcium alginate gels. Lett Appl Microbiol 23:9–12. https://doi.org/10.1111/j.1472-765x.1996.tb00018.x

    Article  CAS  PubMed  Google Scholar 

  49. Jiang T (2013) Effect of alginate coating on physicochemical and sensory qualities of button mushrooms (Agaricusbisporus) under a high oxygen modified atmosphere. Postharvest Biol Tech 76:91–97. https://doi.org/10.1016/j.postharvbio.2012.09.005

    Article  CAS  Google Scholar 

  50. Liu L, Kerry JF, Kerry JP (2007) Application and assessment of extruded edible casings manufactured from pectin and gelatin/sodium alginate blends for use with breakfast pork sausage. Meat Sci 75:196–202. https://doi.org/10.1016/j.meatsci.2006.07.008

    Article  CAS  PubMed  Google Scholar 

  51. Pindar DF, Bucke C (1975) The biosynthesis of alginic acid by Azotobactervinelandii. Biochem J 152:617–622

    Article  CAS  Google Scholar 

  52. Remminghorst U, Rehm BHA (2006) In vitro alginate polymerization the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl Environ Microbiol 72:298–305. https://doi.org/10.1128/aem.72.1.298-305.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Szekalska M, Pucilowska A, Szymanska E, Ciosek P, Winnicka K (2016) Alginate: Current use future perspectives in pharmaceutical biomedical applications. Int J Polym Sci 2016:1–17. https://doi.org/10.1155/2016/7697031

    Article  CAS  Google Scholar 

  54. Draget KI, Moe ST, Skjak-Brak G, Smidsrud O (1995) Alginates. In: Stephen AM, Phillips GO, Williams PA (eds) Food polysaccharides and their applications, 2nd edn. Taylor & Francis, New York, pp 289–234

    Google Scholar 

  55. Field CE, Pivarnik LF, Barnett SM, Rand AG (1986) Utilization of glucose oxidase for extending the shelf-life of fish. J Food Sci 51:66–70. https://doi.org/10.1111/j.1365-2621.1986.tb10837.x

    Article  CAS  Google Scholar 

  56. Kampf N, Nussinovitch A (2000) Hydrocolloid coating of cheeses. Food Hydrocoll 14:531–537. https://doi.org/10.1016/S0268-005X(00)00033-3

    Article  CAS  Google Scholar 

  57. Jost V, Kobsik K, Schmid M, Noller K (2014) Influence of plasticiser on the barrier, mechanical and grease resistance properties of alginate cast films. Carbohydr Polym 110:309–319. https://doi.org/10.1016/j.carbpol.2014.03.096

    Article  CAS  PubMed  Google Scholar 

  58. Williams SK, Oblinger JL, West RL (1978) Evaluation of a calcium alginate film for use on beef cuts. J Food Sci 43:292–296. https://doi.org/10.1111/j.1365-2621.1978.tb02288.x

    Article  CAS  Google Scholar 

  59. Garcia-Ochoa F, Santos VE, Casas JA, Gomez E (2000) Xanthan gum: production, recovery, and properties. Biotech Adv 18:549–579. https://doi.org/10.1016/S0734-9750(00)00050-1

    Article  CAS  Google Scholar 

  60. Faria S, Petkowicz CLO, Morais SAL, Terrones MGH, Resende MM, Franca FP, Cardoso VL (2011) Characterization of xanthan gum produced from sugar cane broth. Carbohydr Polym 86:469–476. https://doi.org/10.1016/j.carbpol.2011.04.063

    Article  CAS  Google Scholar 

  61. Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by xanthomonas campestris. J Food Eng 106:1–12. https://doi.org/10.1016/j.jfoodeng.2011.03.035

    Article  CAS  Google Scholar 

  62. Quoc LPT, Hoa DP, Ngoc HTB, Phi TTY (2015) Effect of xanthan gum solution on the preservation of acerola (Malpighia glabra L.). Cercet Agron Mold 48:89–97. https://doi.org/10.1515/cerce-2015-0045

    Article  Google Scholar 

  63. Gustavson KH (1956) The chemistry and reactivity of collagen. Academic Press, New York

    Google Scholar 

  64. Trotter JA, Kadler KE, Holmes DF (2000) Echinoderm collagen fibrils grow by surface-nucleation and propagation from both centers and ends. J Mol Biol 300:531–540. https://doi.org/10.1006/jmbi.2000.3879

    Article  CAS  PubMed  Google Scholar 

  65. Harrington WF (1996) Collagene. In: Mark HF, Gaylord NG, Bikales NM (eds) Encyclopedia of polymer science and technology. Interscience, New York, pp 1–16

    Google Scholar 

  66. Piez KA, Bornstein P, Kang AH (1968) The chemistry and biosynthesis of interchain cross-links in collagen. In: Crewther WG (ed) Symposium on fibrous proteins. Plenum Press, New York

    Google Scholar 

  67. Fadini AL, Rocha FS, Alvim ID, Sadahira MS, Queiroz MB, Alves RMV, Silva LB (2013) Mechanical properties and water vapour permeability of hydrolyzed collagen- cocoa butter edible films plasticized with sucrose. Food Hydrocoll. 30:625–631

    Article  CAS  Google Scholar 

  68. Hood LL (1987) Collagen in sausage casing. In: Pearson AM, Dutson TR, Bailey AJ (eds) Advances in meat research. Van Nostrand Reinhold company, New York, pp 109–129

    Google Scholar 

  69. Lieberman ER, Guilbert SG (1973) Gas permeation of collagen films as affected by cross-linkage, moisture and plasticizer content. J Polym Sci Polym Symposium 41:33–43. https://doi.org/10.1002/POLC.5070410106

    Article  Google Scholar 

  70. Jones HW, Whitmore RA (1972) Collagen food coating composition and method of preparation. U.S. Patent No. 3,694,234, September 26

  71. Sommer I, Kunz PM (2012) Improving the water resistance of biodegradable collagen films. J Appl Polym Sci 125:E27–E41. https://doi.org/10.1002/app.36461

    Article  CAS  Google Scholar 

  72. Takahashi K, Nakata Y, Someya K, Hattori M (1999) Improvement of the physical properties of pepsin-solubilized elastin collagen film by crosslinking. Biosci Biotechnol Biochem 63:2144–2149. https://doi.org/10.1271/bbb.63.2144

    Article  CAS  PubMed  Google Scholar 

  73. Farouk MM, Price JF, Salih AM (1990) Effect of an edible collagen film overwrap on exudation and lipid oxidation in beef round steak. J Food Sci 55:1510–1563. https://doi.org/10.1111/j.1365-2621.1990.tb03556.x

    Article  CAS  Google Scholar 

  74. Wolf KL, Sobral PJA, Telis VRN (2009) Physicochemical characterization of collagen fibers and collagen powder for self-composite film production. Food Hydrocoll 23:1886–1894. https://doi.org/10.1016/j.foodhyd.2009.01.013

    Article  CAS  Google Scholar 

  75. Shankar S, Jaiswal L, Rhim JW (2016) Gelatin-based nanocomposite films: Potential use in antimicrobial active packaging. Antimicrobial Food Packaging, Amsterdam. Elsevier, The Netherlands, pp 339–348

    Chapter  Google Scholar 

  76. Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll 25:1813–1827. https://doi.org/10.1016/j.foodhyd.2011.02.007

    Article  CAS  Google Scholar 

  77. Alfaro AT, Balbinot E, Weber CI, Tonial IB, Machado-Lunkes A (2014) Fish gelatin: characteristics, functional properties, applications and future potentials. Food Eng Rev 7:33–44. https://doi.org/10.1007/s12393-014-9096-5

    Article  CAS  Google Scholar 

  78. Mellinas C, Valdes A, Ramos M, Burgos N, Garrigos MDC, Jimenez A (2015) Active edible films: current state and future trends. J Appl Polym Sci 133:1–15. https://doi.org/10.1002/app.42631

    Article  CAS  Google Scholar 

  79. Ortiz-Zarama MA, Jimenez-Aparicio AR, Solorza-Feria J (2016) Obtainment and partial characterization of biodegradable gelatin films with tannic acid, bentonite and glycerol. J Sci Food Agric 96:3424–3431. https://doi.org/10.1002/jsfa.7524

    Article  CAS  PubMed  Google Scholar 

  80. Sung SY, Sin LT, Tee TT, Bee ST, Rahmat AR, Rahman WAWA, Tan AC, Vikhraman M (2013) Antimicrobial agents for food packaging applications. Trends Food Sci Technol 33:110–123. https://doi.org/10.1016/j.tifs.2013.08.001

    Article  CAS  Google Scholar 

  81. Alparslan Y, Yapici HH, Metin C, Baygar T, Gunlu A, Baygar T (2016) Quality assessment of shrimps preserved with orange leaf essential oil incorporated gelatin. LWT- Food Sci Technol 72:457–466. https://doi.org/10.1016/j.lwt.2016.04.066

    Article  CAS  Google Scholar 

  82. Yanwong S, Threepopnatkul P (2015) Effect of Peppermint and citronella essential oils on properties of fish skin gelatin edible films. IOP Conf Ser Mater Sci Eng 87:1–8. https://doi.org/10.1088/1757-899X/87/1/012064

    Article  CAS  Google Scholar 

  83. Kanmani P, Rhim JW (2014) Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem 148:162–169. https://doi.org/10.1016/j.foodchem.2013.10.047

    Article  CAS  PubMed  Google Scholar 

  84. Kanmani P, Rhim JW (2014) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNps and nanoclay. Food Hydrocoll 35:644–652. https://doi.org/10.1016/j.foodhyd.2013.08.011

    Article  CAS  Google Scholar 

  85. Davis CG, Lin BH (2005) Factors affecting US Pork consumption. LDPM-13502, U.S. Department of Agriculture, Economic Research Service, Washington, DC, USA

    Google Scholar 

  86. Lee JH, Yang HJ, Lee KY, Song KB (2016) Physical properties and application of a red pepper seed meal protein composite film containing oregano oil. Food Hydrocoll 55:136–143. https://doi.org/10.1016/j.foodhyd.2015.11.013

    Article  CAS  Google Scholar 

  87. Bourtoom T, Chinnan MS (2008) Preparation and properties of rice starch-chitosan blend biodegradable film. LWT- Food Sci Technol. https://doi.org/10.1016/j.lwt.2007.10.014

    Article  Google Scholar 

  88. Mo X, Sun XS, Wang YJ (1999) Effects of molding temperature and pressure on properties of soy protein polymers. Appl Polym Sci 73:2595–2602

    Article  CAS  Google Scholar 

  89. Wang HL (1981) Oriental soybean foods: simple techniques produce many varieties. Food Dev 15(5):29–34

    Google Scholar 

  90. Gennadios A, Weller CL (1991) Edible films and coatings from soymilk and soy protein. Cereal Food World 36:1004–1009

    CAS  Google Scholar 

  91. Brandenburg AH, Weller CL, Testin RF (1993) Edible films and coatings from soy protein. J Food Sci 58:1086–1089. https://doi.org/10.1111/j.1365-2621.1993.tb06120.x

    Article  CAS  Google Scholar 

  92. Kunte LA, Gennadios A, Cuppett SL, Hanna MA, Weller CL (1997) Cast films from soy protein isolates and fractions. Cereal Chem 74(2):115–118. https://doi.org/10.1094/CCHEM.1997.74.2.115

    Article  CAS  Google Scholar 

  93. Padgett T, Han IY, Dawson PL (1998) Incorporation of food- grade antimicrobial compounds into biodegradable packaging films. J Food Prot 61:1330–1335. https://doi.org/10.4315/0362-028x-61.10.1330

    Article  CAS  PubMed  Google Scholar 

  94. Cao N, Fu Y, He J (2007) Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocoll 21:1153–1162. https://doi.org/10.1016/j.foodhyd.2006.09.001

    Article  CAS  Google Scholar 

  95. Emiroglu ZK, Yemis GP, Coskun BK, Candogan K (2010) Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Sci 86:283–288. https://doi.org/10.1016/j.meatsci.2010.04.016

    Article  CAS  PubMed  Google Scholar 

  96. Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortensen G (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10:52–68. https://doi.org/10.1016/s0924-2244(99)00019-9

    Article  CAS  Google Scholar 

  97. Gennadios A, Brandenburg AH, Weller CL, Testin RFJ (1993) Effect of pH on properties of wheat gluten and soy protein isolate films. J Agric Food Chem 41:1835–1839. https://doi.org/10.1021/jf00035a006

    Article  CAS  Google Scholar 

  98. Cabedo L, Feijoo JL, Villanueva MP, Lagaron JM, Gimenez E (2006) Optimization of biodegradable nanocomposites based application on a PLA/PCL blends for food packaging application. Macromol Symp 233:191–197. https://doi.org/10.1002/masy.200690017

    Article  CAS  Google Scholar 

  99. Sinclair RG (1996) The case for polylactic acid as a commodity packaging plastic. J Macromol Sci A 33:585–597. https://doi.org/10.1080/10601329608010880

    Article  Google Scholar 

  100. Koh HC, Park JS, Jeong MA, Hwang HY, Hong YT, Ha SY, Nam SY (2008) Preparation and gas permeation properties of biodegradable polymer/layered silicate nanocomposite membranes. Desalination 233:201–209. https://doi.org/10.1016/j.desal.2007.09.043

    Article  CAS  Google Scholar 

  101. Paul MA, Delcourt C, Alexandre M, Degee Ph, Monteverde F, Dubois Ph (2005) Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polym Degrad Stab 87:535–542. https://doi.org/10.1016/j.polymdegradstab.2004.10.011

    Article  CAS  Google Scholar 

  102. Zhou Q, Xanthos M (2008) Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym Degrad Stab 93:1450–1459. https://doi.org/10.1016/j.polymdegradstab.2008.05.014

    Article  CAS  Google Scholar 

  103. Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Biodegradation of poly(lactic acid) and its nanocomposites. Polym Degrad Stab 94:1646–1655. https://doi.org/10.1016/j.polymdegradstab.2009.07.001

    Article  CAS  Google Scholar 

  104. Ray SS, Yamada K, Okamoto M, Ueda K (2003) Biodegradable polylactide/montmorillonite nanocomposites. J Nanosci Nanotechnol 3:503–510. https://doi.org/10.1166/jnn.2003.220

    Article  CAS  PubMed  Google Scholar 

  105. Jong SJ, Arias ER, Rijkers DTS, Nostrum C, Bosch JJ, Hennink W (2001) New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polym 42:2795–2802. https://doi.org/10.1016/S0032-3861(00)00646-7

    Article  Google Scholar 

  106. Nieddu E, Mazzucco L, Gentile P, Benko T, Balbo V, Mandrile R, Ciardelli G (2009) Preparation and biodegradation of clay composite of PLA. React Funct Polym 69:371–379. https://doi.org/10.1016/j.reactfunctpolym.2009.03.002

    Article  CAS  Google Scholar 

  107. Ahmed J, Varshney SK (2011) Polylactides-chemistry, properties and green packaging technology: a review. Int J Food Prop 14:37–58. https://doi.org/10.1080/10942910903125284

    Article  CAS  Google Scholar 

  108. Solaiman DKY, Ashby RD, Zerkowski JA, Krishnama A, Vasanthan N (2015) Control-release of antimicrobial sophorolipid employing different biopolymer matrices. Biocatal Agric Biotech 4:342–348. https://doi.org/10.1016/j.bcab.2015.06.006

    Article  Google Scholar 

  109. Xavier JR, Babusha ST, George J, Ramana KV (2015) Material properties and antimicrobial activity of polyhydroxybutyrate (PHB) films incorporated with vanillin. Appl Biochem Biotech 176:1498–1510. https://doi.org/10.1007/s12010-015-1660-9

    Article  CAS  Google Scholar 

  110. Narayanan A, Neera M, Ramana KV (2013) Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage micro-organisms in conjunction with pediocin. Appl Biochem Biotech 170:1379–1388. https://doi.org/10.1007/s12010-013-0267-2

    Article  CAS  Google Scholar 

  111. Pinnavaia TJ, Beall GW (2001) Polymer-clay nanocomposites. John Wiley & Sons, Chichester, UK

    Google Scholar 

  112. Hiroi R, Ray SS, Okamoto M, Shiroi T (2004) Organically modified layered titanate: a new nanofiller to improve the performance biodegradable polylactide. Macromol Rapid Commun 25:1359–1363. https://doi.org/10.1002/marc.200400173

    Article  CAS  Google Scholar 

  113. Kumar S (2004) Polymer/carbon nanotubes composites: Challenges and opportunities. Polym Mater Sci Eng 90:59–60

    CAS  Google Scholar 

  114. Fukushima Y, Inagaki S (1987) Synthesis of an intercalated compound of Montmorillanite and 6-polyamide. J Incl Phenomena 5:473–482. https://doi.org/10.1007/BF00664105

    Article  CAS  Google Scholar 

  115. Ray S, Quek SY, Easteal A, Chen XD (2006) The potential use of polymer-clay nanocomposites in food packaging. Int J Food Eng 2:1–11. https://doi.org/10.2202/1556-3758.1149

    Article  Google Scholar 

  116. Sajilata MG, Savitha K, Singhal RS, Kanetkar VR (2007) Scalping of favours in packaged foods. Compr Rev Food Sci Saf 6:17–35. https://doi.org/10.1111/j.1541-4337.2007.00014.x

    Article  CAS  Google Scholar 

  117. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35. https://doi.org/10.1002/adma.19960080104

    Article  CAS  Google Scholar 

  118. Fischer HR, Gielgens LH, Koster TPM (1999) Nanocomposites from polymers and layered minerals. Acta Polym 50:122–126

    Article  CAS  Google Scholar 

  119. Wei M, Shi S, Wang J, Li Y, Duan X (2004) Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD. J Solid State Chem 177:2534–2541. https://doi.org/10.1016/j.jssc.2004.03.041

    Article  CAS  Google Scholar 

  120. De Roy A (1998) Lamellar double hydroxides. Mol Cryst Liq Cryst 311:173–193. https://doi.org/10.1080/10587259808042384

    Article  Google Scholar 

  121. Labajos FM, Rives V, Ulibarri MA (1992) Effect of hydrothermal and thermal treatments on the physicochemical properties of MgeAl hydrotalcite-like materials. J Mater Sci 27:1546–1552. https://doi.org/10.1007/BF00542916

    Article  CAS  Google Scholar 

  122. Messersmith PB, Giannelis EP (1993) Polymer-layered silicate nanocomposites: in situ intercalative polymerization of ε-caprolactone in layered silicates. Chem Mater 5:1064–1066. https://doi.org/10.1021/cm00032a005

    Article  CAS  Google Scholar 

  123. Ruiz-Hitzky E, Aranda P (1990) Polymer-salt intercalation complexes in layer silicates. Adv Mater 2:545–547

    Article  CAS  Google Scholar 

  124. Wu J, Lerner MM (1993) Structural, thermal, and electrical characterization of layered nanocomposites derived from sodium-Montmorillanite and polyethers. Chem Mater 5:835–838. https://doi.org/10.1021/cm00030a019

    Article  CAS  Google Scholar 

  125. Mangiacapra P, Gorrasi G, Sorrentino A, Vittoria V (2006) Biodegradable nanocomposites obtained by ball milling of pectin and montmorillonites. Carbohydr Polym 64:516–523. https://doi.org/10.1016/j.carbpol.2005.11.003

    Article  CAS  Google Scholar 

  126. Sorrentino A, Gorrasi G, Tortora M, Vittoria V, Costantino U, Marmottini F, Padella F (2005) Incorporation of MgeAl hydrotalcite into a biodegradable poly(e-caprolactone) by high energy ball milling. Polym 46:1601–1608. https://doi.org/10.1016/j.polymer.2004.12.018

    Article  CAS  Google Scholar 

  127. VanderHart DL, Asano A, Gilman JW (2001) NMR measurements related to clay dispersion quality and organic-modifier stability in nylon6/clay nanocomposites. Macromolecules 34:3819–3822. https://doi.org/10.1021/ma002089z

    Article  CAS  Google Scholar 

  128. Loo LS, Gleason KK (2003) Fourier transforms infrared investigation of the deformation behaviour of Montmorillanite in nylon6/clay nanocomposites. Macromolecules 36:2587–2590. https://doi.org/10.1021/ma0259057

    Article  CAS  Google Scholar 

  129. Bonnaillie LM, Tomasula PM (2015) Application of humidity-controlled dynamic mechanical analysis (DMA-RH) to moisture-sensitive edible casein films for use in food packaging. Polymers 7:91–114. https://doi.org/10.3390/polym7010091

    Article  CAS  Google Scholar 

  130. Balasubramaniam VM, Chinnan MS, Mallikarjunan P, Philips RD (1997) The effect of edible film on oil uptake and moisture retention of deep-fat fried poultry product. J Food Process Eng 20:17–29. https://doi.org/10.1111/j.1745-4530.1997.tb00408.x

    Article  Google Scholar 

  131. Baldwin EA, Nisperos MO, Chen X, Hagenmaier RD (1996) Improving storage life of cut apples and potato with edible coating. Postharvest Biol Tech 9:151–163. https://doi.org/10.1016/S0925-5214(96)00044-0

    Article  CAS  Google Scholar 

  132. Banks NH (1986) Responses of banana fruit to prolong coating at different times relative to the initiation of ripening. Sci Hortic 26:149–157

    Article  Google Scholar 

  133. Bender RJ, Brecht JK, Sargent SA, Navarro JC, Campbell CA (1993) Ripening initiation and storage performance of avocados treated with an edible-film coating. Acta Hortic 343:184–186. https://doi.org/10.17660/ActaHortic.1993.343.41

    Article  Google Scholar 

  134. Aspinall GO (1970) Polysaccharides. Pergamon Press, Elmsford, New York, Oxford

    Google Scholar 

  135. Wurzburg OB (1986) Modified starches: Properties and uses. CRC Press, Boca Raton, Fla

    Google Scholar 

  136. Whistler RL, Daniel JR (1990) Functions of polysaccharides in foods. Marcel Dekker, Inc., Food additives, New York, NY, pp 395–424

    Google Scholar 

  137. Avena-Bustillos RJ, Cisneros-Zevallos LA, Krochta JM, Saltveit ME Jr (1994) Application of casein-lipid edible film emulsions to reduce white blush on minimally processed carrots. Postharvest Biol Tech 4:319–329. https://doi.org/10.1016/0925-5214(94)90043-4

    Article  CAS  Google Scholar 

  138. Greener IK, Fennema OR (1989) Barrier properties and surface characteristics of edible, bilayer films. J Food Sci 54:1393–1399. https://doi.org/10.1111/j.1365-2621.1989.tb05120.x

    Article  CAS  Google Scholar 

  139. Berthet MA, Angellier-Coussy H, Chea V, Guillard V, Gastaldi E, Gontard N (2015) Sustainable food packaging: valorising wheat straw fibres for tuning PHBV-based composites properties. Compos Part A Appl Sci Manuf 72:139–147. https://doi.org/10.1016/j.compositesa.2015.02.006

    Article  CAS  Google Scholar 

  140. Zolfi M, Khodaiyan F, Mousavi M, Hashemi M (2014) The improvement of characteristics of biodegradable films made from kefiran-whey protein by nanoparticle incorporation. Carbohydr Polym 109:118–125. https://doi.org/10.1016/j.carbpol.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  141. Adilah AN, Jamilah B, Noranizan MA, Hanani ZAN (2018) Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packag. Shelf Life Food Packag Shelf Life 16:1–7. https://doi.org/10.1016/j.fpsl.2018.01.006

    Article  Google Scholar 

  142. Kanatt SR, Chawla SP (2017) Shelf life extension of chicken packed in active film developed with mango peel extract. J Food Saf 38:1–12. https://doi.org/10.1111/jfs.12385

    Article  CAS  Google Scholar 

  143. Dos Santos CK, Almeida Lopes N, Haas Costa TM, Brandelli A, Rodrigues E, Hickmann Flores S, Cladera-Olivera F (2018) Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packag Shelf Life 16:138–147. https://doi.org/10.1016/j.fpsl.2018.03.006

    Article  Google Scholar 

  144. Popovic S, Pericin D, Vastag Z, Popovic L, Lazic V (2011) Evaluation of edible film-forming ability of pumpkin oil cake; effect of pH and temperature. Food Hydrocoll 25:470–476. https://doi.org/10.1016/j.foodhyd.2010.07.022

    Article  CAS  Google Scholar 

  145. Luchese CL, Garrido T, Spada JC, Tessaro IC, de la Caba K (2018) Development and characterisation of cassava starch films incorporated with blueberry pomace. Int J Biol Macromol 106:834–839. https://doi.org/10.1016/j.ijbiomac.2017.08.083

    Article  CAS  PubMed  Google Scholar 

  146. Zhang C, Guo K, Ma Y, Ma D, Li X, Zhao X (2010) Incorporations of blueberry extracts into soybean-protein-isolate film preserve qualities of packaged lard. Int J Food Sci Technol 45:1801–1806. https://doi.org/10.1111/j.1365-2621.2010.02331.x

    Article  CAS  Google Scholar 

  147. Bhat R, Abdullah N, Din RH, Tay GS (2013) Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste. J Food Eng 119:707–713. https://doi.org/10.1016/j.jfoodeng.2013.06.043

    Article  CAS  Google Scholar 

  148. Cinelli P, Schmid M, Bugnicourt E, Wildner J, Bazzichi A, Anguillesi I, Lazzeri A (2014) Whey protein layer applied on biodegradable packaging film to improve barrier properties while maintaining biodegradability. Polym Degrad Stabil 108:151–157. https://doi.org/10.1016/j.polymdegradstab.2014.07.007

    Article  CAS  Google Scholar 

  149. Hanani ZAN, Roos YH, Kerry JP (2014) Use and application of gelatin as potential biodegradable packaging materials for food products. J Biol Macromol 71:94–102. https://doi.org/10.1016/j.ijbiomac.2014.04.027

    Article  CAS  Google Scholar 

  150. Wang LZ, Liu L, Holmes J, Kerry JF, Kerry JP (2007) Assessment of film-forming potential and properties of protein and polysaccharide-based biopolymer films. Int J Food Sci Technol 42:1128–1138. https://doi.org/10.1111/j.1365-2621.2006.01440.x

    Article  CAS  Google Scholar 

  151. Mikkonen KS, Heikkila MI, Willfor SM, Tenkanen M (2012) Films from Glyoxal-Crosslinked spruce galactoglucomannans plasticized with sorbitol. Int J Polym Sci 2012:1–8. https://doi.org/10.1155/2012/482810

    Article  CAS  Google Scholar 

  152. Ye X, Kennedy JF, Li B, Xie BJ (2006) Condensed state structure and biocompatibility of the konjac glucomannan/chitosan blend films. Carbohydr Polym 64:532–538. https://doi.org/10.1016/j.carbpol.2005.11.005

    Article  CAS  Google Scholar 

  153. Wang Y, Zhang R, Ahmed S, Qin W, Liu Y (2019) Preparation and characterization of corn starch bio-active edible packaging films based on zein incorporated with orange-peel oil. Antioxidants 8(391):1–16. https://doi.org/10.3390/antiox8090391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anitha Thulasisingh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thulasisingh, A., Kumar, K., Yamunadevi, B. et al. Biodegradable packaging materials. Polym. Bull. 79, 4467–4496 (2022). https://doi.org/10.1007/s00289-021-03767-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03767-x

Keywords

Navigation